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Abstract

Motivation: Predicting the associations between human microbes and drugs (MDAs) is one critical step in drug development and
precision medicine areas. Since discovering these associations through wet experiments is time-consuming and labor-intensive,
computational methods have already been an effective way to tackle this problem. Recently, graph contrastive learning (GCL) approaches
have shown great advantages in learning the embeddings of nodes from heterogeneous biological graphs (HBGs). However, most GCL-
based approaches don’t fully capture the rich structure information in HBGs. Besides, fewer MDA prediction methods could screen out
the most informative negative samples for effectively training the classifier. Therefore, it still needs to improve the accuracy of MDA
predictions.
Results: In this study, we propose a novel approach that employs the Structure-enhanced Contrastive learning and Self-paced negative
sampling strategy for Microbe-Drug Association predictions (SCSMDA). Firstly, SCSMDA constructs the similarity networks of microbes
and drugs, as well as their different meta-path-induced networks. Then SCSMDA employs the representations of microbes and drugs
learned from meta-path-induced networks to enhance their embeddings learned from the similarity networks by the contrastive
learning strategy. After that, we adopt the self-paced negative sampling strategy to select the most informative negative samples to train
the MLP classifier. Lastly, SCSMDA predicts the potential microbe–drug associations with the trained MLP classifier. The embeddings
of microbes and drugs learning from the similarity networks are enhanced with the contrastive learning strategy, which could obtain
their discriminative representations. Extensive results on three public datasets indicate that SCSMDA significantly outperforms other
baseline methods on the MDA prediction task. Case studies for two common drugs could further demonstrate the effectiveness of
SCSMDA in finding novel MDA associations.
Availability: The source code is publicly available on GitHub https://github.com/Yue-Yuu/SCSMDA-master.

Keywords: structure-enhanced contrastive learning, self-paced negative sampling, microbe–drug association prediction.

Introduction
Microbe or microorganism is a category of microscopic living
organisms that have close interactions with human hosts. Gen-
erally, one microbe community mainly contains bacteria, viruses,
protozoa and fungi [1]. Recent studies have shown that microbe
communities usually play significant roles in human health, such
as facilitating metabolism [2], producing essential vitamins [3]
and protecting against invasion from pathogens [4]. However, the
imbalance or dysbiosis of microbe communities may also cause
some common infectious diseases such as obesity [5], diabetes
[6] and even cancer [7]. Therefore, discovering the relationship
between microbes and drugs is one essential problem for preci-
sion medicine [8–10].

Since inferring these associations with conventional wet-lab
experiments is time-consuming, computational methods have
already been proposed to tackle this problem. Moreover, with the
increasing availability of various data sources related to microbes
and drugs, these computational-based approaches have gained
remarkable success [11]. For example, Zhu [12] raised HMDAKATZ
method that predicted the potential associations based on the
microbe–drug heterogeneous network. Long proposed GCNMDA
model that first measured the similarity between microbes and
drugs and then employed the conditional random field-based
framework to learn their deep representations [13]. HNERMDA
[14] constructed the microbe–drug heterogeneous network and
adopted the metapath2vec model to learn the low-dimensional
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embeddings. EGATMDA [15] aimed to fully utilize the multisource
of microbes and drugs to discover their association relation-
ships. This model could learn the importance of different het-
erogeneous networks with graph-level attention mechanism and
then obtain a deep representation of microbes and drugs. Mean-
while, Graph2MDA [16] employed the variational graph autoen-
coder to obtain the informative and interpretable latent repre-
sentations for microbes and drugs based on their multimodal
attributed graphs. Besides, MKGCN [17] first extracted the fea-
tures of microbes and drugs at different graph convolutional
network (GCN) layers and then predicted the microbe–drug asso-
ciation with multiple kernel matrices. However, these approaches
above may have some weaknesses. For example, HMDAKATZ only
adopted simple metrics to evaluate the association strengths
between microbes and drugs, while GCNMDA and EGATMDA only
selected negative samples in a random manner, which ignored
the effects of different negative samples on the prediction model.
Meanwhile, MKGCN couldn’t fully capture the complex structure
and rich semantics between nodes in the heterogeneous net-
works.

Recently, self-supervised learning approaches have attracted
considerable attention because they provided novel insights into
decreasing the dependency on known labels and enabled the
training on massive unlabeled data [18]. They also have shown the
superior capacity in dealing with graphs which could thoroughly
learn the discriminative representations of nodes [19, 20].
Meanwhile, graph contrastive learning (GCL) modules have
already been widely used to handle the pairwise relationship
prediction tasks among biology entities in the bioinformatics area.
For example, SGCL-DTI first generated the topology and semantic
graph for drug–target pairs and established a contrastive loss
function to guide the learning process in a supervised manner
to obtain embeddings of drugs and targets [21]. To predict
protein–peptide binding residues, PepBCL established a novel
contrastive learning strategy to learn the embeddings of binding
residues based on the imbalanced dataset [22]. To predict
cancer drug response problems, GraphCDR first constructed two
different drug–cell line association networks and adopted the
contrastive learning strategy to enhance its ability in learning
the feature representations of nodes [23]. Besides, MIRACLE took
multiview graph contrastive learning strategy to predict drug-
drug interactions, which could capture molecule structure in the
inter-view and interactions in the intra-view between molecules
simultaneously [24]. To fully learn the embedding of nodes in
the heterogeneous networks, HeCo generated network schema
view and meta-path view based on HINs, and applied the cross-
view contrastive mechanism to capture the information in local
and high-order structures simultaneously [25]. In bioinformatics
areas, generating different meaningful views appropriately is one
essential step for these approaches above. Standard data augmen-
tation approaches, such as node dropping or edge perturbation,
are not trivial for common biological networks because they
might damage the original graph structure and degrade the ability
of prediction models in learning the feature representations
[26, 27]. Meanwhile, as heterogeneous networks usually consist
of multiple types of nodes and relations, GCL approaches should
comprehensively mine the complex structure and rich semantics
for learning the embeddings of nodes.

For the pairwise relationship prediction task, it is still a
challenging problem to select the most informative negative
samples from the candidate negative sample set [28]. Existing
machine learning methods typically treat the known associations
(labeled samples) between entities as the positive samples and

the remained unconfirmed associations (unlabeled samples) as
the candidate negative samples [29]. In this manner, there is an
extreme imbalance between the number of positive and negative
samples. What’s more, with the negative under-sampling strategy,
most approaches only randomly select a subset of negative
samples from the whole candidate negative samples. [30]. For
example, for the drug–target interaction prediction [31], miRNA–
disease associations prediction [30, 32–34] and microbe–drug
association prediction problems [13], these methods randomly
selected the same number of negative samples as that of positive
samples. A standard random under-sampling strategy often leads
to the negligence of important and informative samples, and the
introduction of meaningless and noisy samples [35]. Although
some other models [36–38] improved the negative sampling
strategy, they do not fully screen out the most informative
negative samples that play an important role in the classifiers
in the training process, which may largely limit their prediction
capability.

Motivated by GCL approaches, we adopt the structure-
enhanced contrastive learning strategy to obtain deep represen-
tations of microbes and drugs. Since microbes and drugs have
multisource information, we first measure their respective sim-
ilarity from different perspectives and construct the integrated
similarity networks. Then to fully capture the complex structure
and rich semantics of microbe–drug association network, we
establish the meta-path-induced networks based on different
meta-paths. Therefore, the similarity networks and meta-path-
induced networks form the two views for contrastive learning.
So we utilize the meta-path-induced networks of microbes and
drugs to enhance their feature representations learned from the
similarity networks. Besides, we adopt the self-paced negative
sampling strategy to select the most informative negative
samples, which aim to improve the capability of the prediction
model.

In this study, we put forward a novel method that employs
Structure-enhanced Contrastive learning and Self-paced negative
sampling strategy to identify potential Microbe-Drug Associations
(SCSMDA). Firstly, SCSMDA constructs the similarity networks of
microbes and drugs, as well as their different meta-path-induced
networks. Then, we employ the meta-path-induced networks of
microbes and drugs to enhance their feature representations
learned from the similarity networks with the contrastive learning
strategy. After that, we utilize the self-paced negative sampling
strategy to select the most informative negative samples to train
the MLP classifier. Lastly, SCSMDA predicts the potential microbe–
drug associations with the trained MLP classifier.

The workflow of SCSMDA is displayed in Figure 1. Our main
contributions are summarized as follows:

1) SCSMDA constructs the similarity networks with the mul-
tisource information of microbes and drugs, and the meta-
path-induced networks of microbes and drugs with different
meta-paths.

2) SCSMDA employs the structure-enhanced contrastive
learning strategy to obtain the discriminative embeddings
of microbes and drugs in a self-supervised manner based on
their similarity networks and meta-path-induced networks.

3) SCSMDA adopts the self-paced negative sampling strategy to
select the most informative negative samples for training the
MLP classifier.

4) Experimental results on three datasets indicate that
SCSMDA outperforms other baseline approaches in microbe–
drug association prediction tasks.
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Figure 1. The overall workflow of SCSMDA. In step 1, SCSMDA constructs the similarity networks of microbes and drugs with their multisource
information, as well as their different meta-path-induced networks. In step 2, we employ the meta-path-induced networks of microbes and drugs
to enhance their feature representations learned from the similarity networks with the contrastive learning strategy. In step 3, SCSMDA adopts the
self-paced negative sampling strategy to select the most informative negative samples for training the MLP classifier. In step 4, SCSMDA predicts the
potential microbe–drug associations with the trained MLP classifier. In the figure, �1, �2, �3 and �4 denote meta-path MDM, MDMDM, DMD and DMDMD,
respectively. SLA represents the semantic level attention.

Materials and methods
In this section, we will first briefly describe the experiment
datasets and basic concepts used in SCSMDA. Then, the integrated
similarity networks and meta-path-induced networks of microbes
and drugs are established. Next, SCSMDA learns the embeddings
of microbes and drugs with structure-enhanced contrastive
learning strategy. After that, we utilize the self-paced negative
sampling strategy to select the most informative negative
samples and train the MLP classifier. Lastly, the loss function
and some implementation details are presented.

Data collection
Currently, there are mainly three different known microbe–drug
association datasets, which are MDAD [39], aBiofilm [40] and
DrugVirus [41]. We collect these public datasets from the research
[13] (https://github.com/longyahui/GCNMDA). Specifically, MDAD
mainly contains 173 microbes and 1373 drugs involving 2470
associations. For aBiofilm dataset, it consists of 2884 microbe–
drug associations between 140 microbes and 1720 drugs. For

DrugVirus dataset, there are 95 microbes and 175 drugs includ-
ing 933 microbe–drug associations between them. The statistics
about these datasets are displayed in Table 2.

In each dataset, the association relationships between
microbes and drugs can be established as one bipartite network.
Without loss generality, the corresponding adjacency matrix
can be denoted as A ∈ R

Nm×Nd , where Nm and Nd represent
the number of microbes and drugs in the bipartite network. Aij

will be 1 if there is one association between mi and dj, and 0
otherwise.

Basic concept
Definition 1. Heterogeneous Information Network (HIN). One

heterogeneous information network could be defined as an
undirected graph G = (V ,E) with the entity type mapping
function φ : V → A and a relation type mapping ϕ : E → R,
where V and A denote the entity set and entity type set,
and E and R denote the relation set and relation type set.
Network G will be one homogeneous information network
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Figure 2. A toy example for SCSMDA. (A) Microbe–drug association network. (B) Four meta-paths involved in SCSMDA, which are MDM, MDMDM, DMD
and DMDMD. (C) Drug D2 and its DTD meta-path-based neighbors D1, D2, D3 and D4 based on the microbe–drug association network in (A). (D)The
meta-path-induced network with DMD based on the network in A.

Table 1. Main notations in this research

Notations Descriptions

G Heterogeneous Information Network
� Meta-path
A microbe–drug association matrix
A� Meta-path-induced matrix under �

h Initial features of nodes
h′ Projected feature of nodes
sn The integrated similarity network
mp The integrated meta-path-induced network
zsn

mi
The embedding of microbe mi learned from sn

zmp
mi

The embedding of microbe mi learned from mp
zsn

dj
The embedding of drug dj learned from sn

zmp
dj

The embedding of drug dj learned from mp

zmi The final embedding of microbe mi

zdj
The final embedding of drug dj

H The Hardness function
N�

vi
Meta-path-based neighbors for vi with �

(i, j) The node pair of microbe mi and drug dj

yij The ground truth of the node pair (i, j)
ŷij The predicted score of the node pair (i, j)
Y+ Positive MDAs in the training set
Y− Selected negative MDAs in the training set
MLP The Multilayer Perceptron

Table 2. The statistics for microbe–drug association datasets.

Datasets # Microbes # Drugs # Associations

MDAD[39] 173 1,373 2,470
aBiofilm[40] 140 1,720 2,884
DrugVirus[41] 95 175 933

if |A| + |R| = 2. Otherwise, it will be one heterogeneous
information network.

Example. The microbe–drug association network (Figure 2A)
could be treated as one HIN, since there are two types of
nodes which are microbe and drug, and one type of link,
which is the association relationship.

Definition 2. Meta-paths. Generally, one meta-path � with

l nodes can be defined as N1
R1−→ N2

R2−→ · · · Rl−→ Nl,
which is abbreviated as N1N2 · · · Nl. The composition
relation between node N1 and Nl is formulated as R =
R1 ◦ R2 ◦ · · · ◦ Rl, where ◦ is the composition operator on
relations.

Example. In the microbe–drug HIN (Figure 2A), two drugs can
be connected by different meta-paths (Figure 2B), such as
DMD and DMDMD. This type of meta-paths usually has a
certain biological meaning. For example, DMD indicates
that if two drugs interact with one common microbe,
they should have a higher similarity with consistent
functionality.

Definition 3. Meta-path-based neighbors. Suppose there is
one node named vi and one meta-path �, its meta-path-
based neighbors N�

vi
can be defined as the nodes that

connect with vi according to the meta-path �.

Example. As is shown in Figure 2C, for drug D1, its DMD
meta-path-based neighbors are D1, D2, D3 and D4 based
on Figure 2C.

Microbe and drug similarity network
construction
Microbe similarity network construction
SCSMDA measures the similarity of microbes from two aspects.
The 1st kind of similarity is called the microbe functional similar-
ity. Suppose there are two microbes named mi and mj respectively,
their microbe functional similarity can be denoted as FM(mi, mj).
SCSMDA measures the microbe functional similarity between
all microbe pairs and finally establishes the Microbe Functional
Similarity Network. The detailed calculation process is presented
by Kamneva [42] and Long [13].

The 2nd type of microbe similarity is called the Gaussian-
interaction-profile-kernel-based similarity. The basic assumption
for this type of similarity is that similar microbes (drugs) inter-
acting with similar drugs (microbes) will have similar profiles.
Specifically, suppose there is one microbe–drug association
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matrix named A, the interaction profiles for microbe mi and mj

can be denoted as the i-th and j-th row in association matrix
A, which are represented as A(mi) and A(mj). So, the Gaussian
interaction profile kernel-based similarity for microbe mi and mj

is formulated as:

GM(mi, mj) = exp
(−ηm‖A(mi) − A(mj)‖2) , (1)

where ηm is the normalized kernel bandwidth, which is calculated
as:

ηm = η′
m/

(
1

Nm

Nm∑
i=1

‖A(mi)‖
)

, (2)

where η′
m is always set to 1. SCSMDA measures all the similar-

ities of all microbe pairs and constructs the Microbe Gaussian-
Interaction-Profile-Kernel-based Similarity Network.

Suppose there are two microbes named mi and mj, and their
functional similarity and Gaussian-interaction-profile-kernel-
based similarity are FM(mi, mj) and GM(mi, mj), the integrated
microbe similarity Sm is defined as:

Sm(mi, mj) =

⎧⎪⎨⎪⎩
FM(mi ,mj)+GM(mi ,mj)

2 if FM
(
mi, mj

) �= 0

GM(mi, mj) otherwise
(3)

SCSMDA measures the integrated similarities for all the
microbe pairs and then constructs the integrated microbe
similarity network.

Drug similarity network construction
Meanwhile, we also measure the similarity of drugs from two
aspects. The 1st one is the drug structure-based similarity
proposed by Hattori [43]. For two drugs named di and dj, their
structure-based similarity can be represented as DS(di, dj). After
calculating all the similarities between all drug pairs, we can
establish the Drug Structure-based Similarity Network.

The 2nd similarity between drugs is the Gaussian-interaction-
profile-kernel-based similarity. Similar to the Gaussian-interaction-
profile-kernel-based similarity of microbes, the drug Gaussian-
interaction-profile-kernel-based similarity between di and dj can
be defined as:

GD(di, dj) = exp
(−ηd‖A(di) − A(dj)‖2) , (4)

where A(di) and A(dj) represent the interaction profiles, which are
defined as the i-th and j-th columns in microbe–drug association
matrix A. And ηd is the normalized kernel bandwidth, which is
calculated as:

ηd = η′
d/

(
1

Nd

Nd∑
i=1

‖A(di)‖
)

(5)

where η′
d is always set to 1. SCSMDA measures the similarity of all

drug pairs and constructs the Drug Gaussian-Interaction-Profile-
Kernel-based Similarity Network.

For two microbes named di and dj and their drug structure-
based similarity and drug Gaussian-interaction-profile-kernel-

based similarity are DS(di, dj) and GD(di, dj) respectively, the inte-
grated microbe similarity Sd is defined as:

Sd(di, dj) =
{

DS(di ,dj)+GD(di ,dj)

2 if DS(di, dj) �= 0
GD(di, dj) otherwise

(6)

SCSMDA measures the integrated similarities for all the drug
pairs and then constructs the integrated drug similarity network.

Meta-path-induced network construction
The microbe–drug association network can be regarded as one
HIN with complex structure and rich semantics. Meta-paths could
comprehensively reflect the structure of HINs and have been
widely employed to capture rich semantic meanings in HINs.
Therefore, SCSMDA establishes different meta-path-induced net-
works for microbes and drugs according to their diverse meta-
paths.

In this study, SCSMDA mainly adopts two meta-paths named
�1 = MDM and �2 = MDMDM for microbes, and two meta-paths
named �3 = DMD and �4 = DMDMD for drugs to establish their
corresponding meta-path-induced networks. For the microbe–
drug association network represented as A, given meta-path �1 =
MDM and �2 = MDMDM, the corresponding meta-path-induced
networks for microbes can be formulated as:

A�1 = A × AT (7)

A�2 = A2
�1

= (A × AT)2. (8)

Meanwhile, the meta-path-induced networks for drugs with �3

and �4 can be represented as

A�3 = AT × A (9)

A�4 = A2
�3

= (AT × A)2. (10)

A toy example for constructing the meta-path-induced net-
work has been represented in Figure 2D.

Node feature transformation
Since there are two different types of nodes in microbe–drug
association network and their initial features belong to different
spaces, we need to transform their features into one common
vector space. Without loss generality, for one node vi with type φvi ,
SCSMDA maps its initial features into one shared space denoted
as:

h′
vi

= σ(Wφvi
· hvi + bφvi

), (11)

where h′
vi

∈ R
d×1 is the projected feature for node vi, σ(·) is the

activation function, Wφvi
is the type-specific mapping matrix and

bφ is the vector bias.

Embeddings learning from the integrated
similarity networks
Particularly, GCNs have exhibited the great expressive ability in
learning the embeddings of nodes in graphs [16]. For vanilla GCN
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[44], one-layer graph convolution encoder on graph G with a
symmetric adjacency matrix Q can be represented as:

H(l+1) = σ(D̃− 1
2 Q̃D̃− 1

2 H(l)W(l)), (12)

where σ(·) is the activation function. Q̃ = Q + I and I is the
identity matrix with the same shape as Q, D̃ is the degree matrix
of Q̃, W(l) is the learnable weights at lth layer, H(l) denotes the
representations of nodes at lth layer. The output representations
of nodes at lth layer can be input into the next layer of GCNs. In
this way, we can get the nodes embeddings at any layer.

Suppose the integrated microbe similarity network is Sm, the
embedding of microbes at l+1 layer can be formulated as follows:

H(l+1)

Sm
= σ(D̃− 1

2 S̃mD̃− 1
2 H(l)

Sm
W(l)

Sm
), (13)

where S̃m = Sm + I and I is the identity matrix with the same shape
as Sm, D̃ is the degree matrix of S̃m, H(l)

Sm
denotes the representations

of microbes at lth layer.
Similarly, suppose the integrated drug similarity network is Sd,

the embedding of drugs at l+1 layer can be formulated as:

H(l+1)

Sd
= σ(D̃− 1

2 S̃dD̃− 1
2 H(l)

Sd
W(l)

Sd
), (14)

where S̃d = Sd + I and I is the identity matrix with the same shape
as Sd, D̃ is the degree matrix of S̃d, H(l)

Sd
denotes the representations

of microbes at lth layer.
The ultimate embeddings for microbes mi and drugs dj learned

from the integrated similarity networks can be represented as zsn
mi

and zsn
dj

.

Embedding learning with meta-path-induced
networks
SCSMDA generates two different meta-path-induced networks
for microbes and drugs, respectively. Since microbes and drugs
have similar learning module structures with meta-path-induced
networks, we only take microbes as an example to show the
process that SCSMDA learns their embeddings with vanilla GCNs.

The meta-path-induced network for microbes with �n is
denoted as A�n , where n ∈ {1, 2}. We apply vanilla GCNs on A�n to
learn the embeddings of microbes, which can be formulated as:

H(l+1)

A�n
= σ

(
D̃− 1

2 Ã�n D̃− 1
2 A(l)

�n
W(l)

A�n

)
, n ∈ {1, 2} (15)

where H(l+1)

A�n
is the embeddings of microbes at l-th layer.

SCSMDA adopts the Semantic Level Attention (SLA) to obtain
the final embeddings of microbes from different meta-path-
induced networks. Suppose there is one microbe mi, its embedding
learned from A�n is represented as hA�n

mi
, where n ∈ {1, 2}. The

final embedding from the meta-path-induced networks for mi is
denoted as:

zmp
mi

=
N∑

n=1

β�n · hA�n
mi

, (16)

where β�n is the learned weight for meta-path �n and can be
calculated as

w�n = 1
|V|

∑
mi∈V

aT
mp · tanh

(
Wmp · h�n

mi
+ bmp

)
(17)

β�n = exp(w�n )∑N
n=1 exp

(
w�n

) , (18)

where Wmp ∈ R
d×d and bmp ∈ R

d×1 are the two learnable parame-
ters, and amp represents the semantic-level attention vector.

Similarly, suppose there is one drug dj, its final embeddings
learned from the meta-path-induced network A�n where n ∈ {3, 4}
can be represented as zmp

dj
.

Structure-enhanced contrastive learning strategy
After getting two types of embeddings zsn

mi
and zmp

mi
for microbe mi,

we feed them into one MLP layer and get the embeddings used for
calculating the contrasting loss:

zsn
mi

_proj = W(2)σ
(
W(1)zsn

mi
+ b(1)

) + b(2), (19)

zmp
mi

_proj = W(2)σ
(
W(1)zmp

mi
+ b(1)

) + b(2), (20)

where σ is the ReLU nonlinear function. The parameters
W(1),W(2),b(1) and b(2) are shared by the two embeddings learned
from the similarity networks and meta-path-induced networks.

Generally, traditional contrastive learning approaches only
treat the same instances at different augmented views as the
positive sample and treat the different instances as negative
samples [45]. Differently, SCSMDA chooses a novel positive
selection strategy that if two microbes are connected by enough
meta-paths, they could also be regarded as positive samples.
Specifically, for two microbes mi and mj, SCSMDA first counts the
meta-paths connecting two microbes, which can be formulated
as:

Cmi (mj) =
N∑

n=1

I
(
mj ∈ N�n

mi

)
, (21)

where I(·) is the indicator function and N�n
mi

is the meta-path
neighbors of mi under �n. Then, we construct set Smi = {mj|mj ∈
V and Cmi (mj) �= 0} and sort the elements in Smi with the value
of Cmi (·) in a descending order. After that, we define a threshold
(named Tpos) and select the top Tpos microbes from Smi . These
selected microbes form the conditional positive sample set
denoted as Pmi . In particular, we treat the same microbe in Pmi

as the instinct positive pair. The remained microbes in Smi are
treated as conditional negative samples denoted as Nmi . A toy
example for instinct positive pair, conditional positive pairs and
conditional negative pairs is displayed in Figure 3.

Based on the conditional positive sample set Pmi and the con-
ditional negative sample set Nmi , the contrastive loss from the
integrated similarity network can be defined as:

Lsn
mi

= −log

∑
mj∈Pmi

exp
(
sim

(
zsn

mi
_proj, zmp

mj
_proj

)
/τ

)
∑

mk∈Pmi

⋃
Nmi

exp
(
sim

(
zsn

mi
_proj, zmp

mk
_proj

)
/τ

) , (22)

where sim(zsn
mi

, zmp
mj

) is the cosine similarity between microbe mi

and mj, and τ is the temperature parameter.
Meanwhile, the contrastive learning loss in the integrated

meta-path-induced network Lmp
mi

is similar to Lsn
mi

, which can be
formulated as:

Lmp
mi

= −log

∑
mj∈Pmi

exp
(
sim

(
zmp

mi
_proj, zsn

mj
_proj

)
/τ

)
∑

mk∈Pmi

⋃
Nmi

exp
(
sim

(
zmp

mi
_proj, zsn

mk
_proj

)
/τ

) . (23)
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Figure 3. The positive pair selecting strategy of SCSMDA. Gi and Gj are two different views. m1 and m′
1 are the same nodes at Gi and Gj and ( m1, m′

1) is the
instinct positive pair. m′

2 and m′
5 will be the conditional positive samples for m1 if they are connected by enough meta-paths and ( m1,m′

2 ) and ( m1,m′
5)

could be the conditional positive pairs. Meanwhile, (m1, m′
3 ) and ( m1,m′

4) are the conditional negative pairs if (m1, m′
3 ) and ( m1,m′

4) don’t connect by
enough meta-paths.

The overall loss function for learning the embeddings of
microbes can be defined as:

Jm = 1
|V|

∑
mi∈V

[
λm · Lsn

mi
+ (1 − λm) · Lmp

mi

]
, (24)

where parameter λm is the coefficient to balance the con-
tributions of the similarity network and meta-path-induced
network.

SCSMDA learns the embeddings of nodes from the integrated
similarity network by aggregating Information from their direct
neighbors, making it could capture the local structure. Mean-
while, SCSMDA could also learn embedding from the meta-path-
induced networks with multiple meta-paths, aiming at capturing
the high-order structure Information. In our study, the proposed
structure-enhanced contrastive strategy employs the representa-
tions of microbes and drugs from meta-path-induced networks to
enhance their embeddings learned from the similarity networks
with the contrastive learning strategy. SCSMDA adopts the embed-
dings of microbes learned from the integrated similarity network
as their final embedding.

Meanwhile, SCSMDA learns the embeddings of drugs in a sim-
ilar way, and its overall loss objection is defined as:

Jd = 1
|V|

∑
dj∈V

[
λd · Lsn

dj
+ (1 − λd) · Lmp

dj

]
, (25)

where parameter λd is the coefficient to balance the contributions
of the similarity network and meta-path-induced network. We
could optimize SCSMDA via backpropagation for learning the
feature representations of microbes and drugs. Lastly, the repre-
sentations from the integrated similarity networks for microbes
and drugs are regarded as the final embeddings denoted as zmi

and zdj
.

Self-paced negative sampling strategy
In the microbe–drug association datasets, all the known microbe–
drug associations form the positive sample set denoted as
P, whereas all the remaining microbe–drug associations are
regarded as the candidate negative samples denoted as N. The

number of positive and negative samples in this study has a
relationship that |N| � |P|.

Previous research always randomly selects the same number
of negative samples with that of the positive samples from the
candidate negative sample set, which does not fully consider the
specificity of negative samples. Selecting the most informative
samples from the candidate negative sample set is a challenging
task, which affects the capability of the prediction model. Here we
employ the self-paced negative-sampling strategy motived by SPE
[46] to choose the most informative negative samples.

The self-paced negative sampling strategy divides samples in
N into three classes with the Hardness function H, which are
trivial samples, noise samples and borderline samples. The trivial
samples are scored with small values by H indicating that they
are well classified by the classifier, whereas the noise samples are
scored with large values by H meaning that they may be false
negative samples. These two types of samples should be selected
as the negative samples with smaller probabilities for training
the classifier. Correspondingly, we should focus on the borderline
samples with scores around 0.5, since these samples are the most
informative and should be selected as the negative samples with
larger probabilities for training the classifier.

There are four steps for self-paced negative sampling strategy
in SCSMDA, which are listed below.

• Step one: SCSMDA predicts the values for all the candidate
negative microbe–drug association pairs with the MLP classi-
fier f (·).

• Step two: SCSMDA cuts all the candidate negative samples
into k bins with respect to values scored by the hardness
function H, which can be formulated as:

Bl = {(x, y)| l − 1
k

≤ H(x, y, f ) <
l
k

},H ∈ [0, 1], (26)

where k is a hyper-parameter. Bl is the negative sample set for
l-th bin where l ∈ {1, 2, . . . , k}. The hardness function used in
SCSMDA is defined as:

H(x, y, f ) = |f (x) − y|, (27)
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where f (x) represents the MLP classifier’s output probabil-
ity score of sample x and y is the ground-truth label of
sample x.

• Step three: SCSMDA employs the self-paced negative strategy
to select the negative samples from k bins and obtains the
negative sample set, which can be denoted as:

N0 = {xlj|l ∈ [1, k], j ∈ [1, SBl ]; l, j ∈ N
+}, (28)

where k is the number of bins, SBl is the number of nega-
tive samples selected from l-th bin, and xln denotes the j-th
selected sample from l-th bin Bl. Parameter SBl is defined as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

SBl = wl∑
t wt

· |P|, t = 1, · · · , k

wl = 1
hl+α

, l = 1, · · · , k

α = tan( iπ
2n )

hl = ∑
xlj∈Bl

H(xlj, ylj, f )/|Bl|, l = 1, · · · , k,

where wl represents the normalized sampling weight of l-
th bin, α is called the self-paced factor and hl denotes the
average hardness contribution for l-th bin. Besides, i denotes
iteration number.

• Step four: The selected negative samples N0 and all the
known positive samples P are composed of the training set
to train the MLP classifier and begin the next iteration.

The algorithm for the self-paced negative sampling strategy is
shown in Algorithm 1.

Final decoder
In this research, we adopt MLP as the final decoder, which first
employs the embeddings of microbes and drugs as its input
and then performs the element-wise multiplication operation on
the embeddings of microbes and drugs. Lastly, the association
probability score ŷij for microbe mi and drug dj can be formulated
as:

ŷij = Sigmoid(Q1(ReLU(Q2(zmi 
 zdj
)))) (29)

where zmi and zdj
denote the embeddings for microbe mi and drug

dj. The operation 
 denotes the element-wise multiplication for
microbe zmi ∈ RF′

and drugs zdj
∈ RF′

, and Q1 ∈ R1×F′
and Q2 ∈ RF′×F′

are the learnable matrices. Besides, ReLU and Sigmoid are the two
activation functions.

Loss function
SCSMDA applied the binary cross-entropy as the loss function
in microbe–drug association prediction problem because of its
effective performance on the binary-classification task. The
binary cross-entropy loss (denoted as LB) used in SCSMDA is
defined as

LB = −
∑

(i,j)∈Y+∪Y−
yij log ŷij + (1 − yij)log(1 − ŷij), (30)

where (i, j) denotes the microbe–drug sample for microbe mi and
drug dj, Y+ and Y− are positive and negative microbe–drug sample
subsets for training, respectively. If one microbe–drug pair (i, j) ∈
Y+, the ground truth yij is 1. If (i, j) ∈ Y−, the ground truth yij is 0.
The prediction association value is represented as ŷij.

Meanwhile, coupled with the two loss functions at the
structure-enhanced contrastive learning strategy (Eq. 24 and Eq.
25), the final overall loss function L for SCSMDA is formulated
as:

L = LB + Jm + Jd. (31)

Implementation details
SCSMDA initializes the learnable parameters with Glorot initial-
ization [47] and trains the model with Adam [48]. We adopt the
grid search strategy to tune parameters for SCSMDA. Specifically,
the learning rate is set to 0.0005 and τ is tuned to 0.5. The
final embedding sizes of drugs and microbes are both 128. The
numbers of GCN layers and MLP layers are equal to 1. The best
number of positive pairs k is 10. Besides, during the training
process, the dropout values for the encoder on the integrated
similarity network and meta-path-induced network are 0.95 and
0.3, respectively, and SCSMDA achieves the highest evaluation
values when the number of epochs is 1000.

Besides, we implement our mode using a software environment
with PyCharm Community Edition 2022.1.1 version and libraries
with Python v3.9.5, Pytorch v1.11.0, NumPy v1.22.3, sci-kit-learn
v1.1.1, scipy v1.9.3, and tqdm v4.64.0. All experiments were
performed on hardware with a desktop computer with one
Intel(R) Core(TM) i5-12600KF CPU and one NVIDIA RTX3060
8GB GPU. The detailed Implementation information has been
published on GitHub (https://github.com/Yue-Yuu/SCSMDA-
master).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/2/bbac634/7009077 by Zhengzhou U

niversity user on 14 Septem
ber 2023



Predicting microbe–drug associations | 9

Time complexity analysis
As shown in Figure 1, there are mainly three steps for training
SCSMDA, which are the construction of similarity and meta-path-
induced networks, and the structure-enhanced contrastive learn-
ing strategy, the self-paced negative sampling strategy. Therefore,
we analyze the time complexity for them one by one.

In step one, suppose there are m microbes and n drugs, SCSMDA
first measures the similarity between microbes or drugs and their
time complexity is O(m2/2) + O(n2/2). For establishing the inte-
grated microbe and drug similarity network, the time complexity
is O(m2) + O(n2). Besides, for establishing the meta-path-induced
networks, their time complexities are O(m2n), (m3), O(n2m), and
O(n3) under meta-path �1, �2, �3, and �4, respectively. As a result,
the total time complexity in this step is O(m2/2)+O(n2/2)+O(m2)+
O(n2) + O(m2n) + O(n2m) + O(m3) + O(n3) = O(m3) + O(n3).

In step two, SCSMDA adopts the GCNs to learn the embeddings
of microbes and drugs. Suppose the layer number of GCNs is 1, and
the initial and output feature dimensions of nodes are C and F, the
time complexity for learning embeddings is O(|E|CF), where E is
the edge set of the input network to GCNs. Besides, since SCSMDA
measure similarity between all the nodes for the contrastive
learning strategy process, the time complexity is O(m2) + O(n2).
Therefore, the total time complexity in this step is O(|E|CF) +
O(m2) + O(n2).

In step three, SCSMDA selects the most informative samples
from the candidate negative sample set. The positive sample set is
denoted as P. Therefore, the number of the positive microbe–drug
pairs is equal to |P|, and the number of the candidate negative
microbe–drug pairs will be (mn − |P|). The time complexity for
performing one epoch is O(mn − |P|). Suppose the epoch number
is T, then the time complexity is O(T(mn − |P|)). Since ((mn) � |P|),
the total time complexity in this step is O(Tmn).

In summary, the total time complexity for training SCSMDA is
the sum in these three steps above, which could be formulated as
O(m3)+O(n3)+O(|E|CF)+O(n2)+O(m2)+O(Tmn) = O(m3)+O(n3)+
O(|E|CF) + O(Tmn). Since parameters C and F are constant, so the
ultimate time complexity is O(m3) + O(n3) + O(Tmn).

Results
In this section, we first describe the evaluation metrics widely
used in our study. Then, a comprehensive comparison between
SCSMDA and other baseline approaches will be presented from
different aspects. After that, ablation study and parameter sen-
sitivity analysis experiments for SCSMDA are extensively investi-
gated. Lastly, we conduct case studies for two interested drugs.

Experimental setup and evaluation metrics
In this study, we adopt the 5-fold cross-validation (5-CV) strat-
egy [49, 50] to evaluate the performance of SCSMDA as well
as the baseline approaches on MDAD, aBiofilm and DrugVirus
datasets, respectively. Specifically, for each dataset, all the known
microbe–drug association pairs are treated as the positive sam-
ples and form the positive sample set, whereas all the remained
unknown microbe–drug association pairs are treated as the can-
didate negative samples and form the candidate negative sample
set. SCSMDA selects the same number of negative samples with
that of positive samples according to the self-paced negative
strategy from the candidate negative sample set. The positive
samples and selected negative samples are constructed as the
experimental dataset, and we conduct the 5-CV evaluation exper-
iment on it.

For the 5-CV experiment, SCSMDA first divides the experi-
mental dataset into five subsets with equal numbers. Then, each
subset is treated as the test subset in turn and the remaining four
subsets will be training subsets. In this way, we could calculate
true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN), respectively.

In addition, we mainly employ five metrics, which are area
under the receiver operating characteristic curve (AUC), area
under the precision-recall curve (AUPRC), accuracy (ACC),
Matthews correlation coefficient (MCC) and F1 score to evaluate
the performance of the SCSMDA as well as comparison methods.
These five evaluation metrics are widely used in previous studies
[30], and here we don’t repeat them anymore.

To minimize the bias of the 5-CV strategy result, we perform
the experiment five times for each method and then obtain the
mean and standard deviation values of the scores.

Comparison with other baseline methods on
AUC and AUPRC metrics
Here, we choose eight competitive approaches for comparison.
These approaches are GCN [44], GAT [51], DTIGAT [52], NIMCGCN
[53], MMGCN [54], GCNMDA[13], DTI-CNN [55] and Graph2MDA
[16].

• GCN [44] is a semi-supervised learning approach. Here we
feed microbe similarity network and drug similarity network
into GCNs and learn their embeddings for predicting the
association relationships.

• GAT [51] is one of the graph neural networks with the atten-
tion mechanism. We feed microbes similarity network and
drug similarity network into GATs and obtain their feature
representations for completing the microbe–drug association
prediction tasks.

• DTIGAT [52] is originally employed to predict the interactions
between proteins and drugs with the attention mechanism.
Here we feed the microbe–drug association network into this
model to learn the features of microbes and drugs.

• NIMCGCN [53] firstly adopts the GCNs to obtain the latent
embeddings of miRNA and disease from their similarity net-
works and predicts miRNA–disease associations. We feed the
microbe–drug association network into the model to predict
microbe–drug associations.

• MMGCN [54] employs GCN encoder to obtain the embed-
dings of miRNA and disease in different similarity views and
enhance the learned representations by utilizing multichan-
nel attention mechanism.

• GCNMDA [13] builds a heterogeneous network for drugs and
microbes, and then employs the GCN-based framework with
conditional Random Field as well as attention mechanism
techniques to discover microbe–drug associations, named
GCNMDA.

• DTI-CNN [55] extracts the embeddings of drugs and proteins
based on the heterogeneous networks and constructs a con-
volutional neural network model to infer their interactions
with learned features from a denoising autoencoder model.

• Graph2MDA [16] adopts the variational graph autoencoder
for learning the latent representations of microbes and drugs
based on the multimodal attributed graphs and predicts
MDAs with the deep neural network model.

We compare SCSMDA with other baseline methods on AUC and
AUPRC metrics, and the corresponding results on MDAD, aBiofilm
and DrugVirus datasets are shown in Figure 4. The proposed
method SCSMDA achieves the best performance in all the SOTA
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Figure 4. The ROC and PR curves of SCSMDA as well as the baseline methods for predicting microbe–drug associations on MDAD, aBiofilm and DrugVirus
datasets.

approaches. In particular, the AUC values of SCSMDA on MDAD,
aBiofilm and DrugVirus datasets are 0.9576, 0.9639 and 0.8881
respectively, whereas the AUPRC values of SCSMDA on these
datasets are 0.9476, 0.9539 and 0.8630, respectively.

Besides, DTI-CNN wins the 2nd-best performance in all the
baseline approaches. Specifically, on MDAD dataset, its AUC
and AUPRC values are 0.9332 and 0.9263, which are 2.5% and
2.2% lower than those of SCSMDA. On aBiofilm and DrugVirus
datasets, its AUC values are 0.9467 and 0.8490, which is 1.9%
and 4.4% lower than those of SCSMDA. Besides, on aBiofilm and
DrugVirus datasets, Graph2MDA and NIMCGCN win the 2nd-best
performance on AUPRC metric, and their values are 0.9485 and
0.8462, respectively. The results in Figure 4 fully demonstrate
that SCSMDA is the most competitive approach in microbe–drug
association prediction on these datasets.

Comparison with other baseline methods under
different ratios
Different ratios between the number of positive samples and
the number of negative samples may affect the performance of
SCSMDA as well as the baseline approaches. Therefore, to evaluate
their performance comprehensively, we conduct the evaluation
experiments under three different ratios (# positive samples: #
negative samples=1:1, 1:5 and 1:10, respectively) five times and
obtain the mean and standard deviation values of the results. The
corresponding results on AUC and AUPRC metrics are presented
in Table 3.

For the result with the 1:1 ratio, SCSMDA wins the 1st rank on
the three datasets. Specifically, the AUC and AUPRC values are
0.9573 and 0.9464 on MDAD dataset. Besides, the AUC and AUPRC
values are 0.9658 and 0.9450 on aBiofilm dataset, whereas AUC

and AUPRC values are 0.8834 and 0.8637 on DrugVirus, respec-
tively. Meanwhile, DTI-CNN achieves the 2nd-best performance
on these three datasets. Its AUC values are 0.9325, 0.9436 and
0.8581, and the AUPRC values are 0.9242, 0.9316 and 0.8396 on
MDAD, aBiofilm and DrugVirus, respectively.

For the result with the 1:5 ratio, SCSMDA and DTI-CNN wins
the 1st rank and 2nd rank on these three datasets. In particu-
lar, for the AUC metric, SCSMDA obtains the 0.9434, 0.9559 and
0.8757 scores, whereas DTI-CNN achieves the 0.9308, 0.9412 and
0.8466 scores, respectively. For the AUPCR metric, SCSMDA gets
the 0.7607, 0.7971 and 0.5777 values, respectively, and DIT-CNN
obtains 0.7545, 0.7891 and 0.5644 values, respectively.

For the result with the 1:10 ratio, SCSMDA achieves the highest
scores on AUC metric, which are 0.9377, 0.9481 and 0.8729 on
MADA, aBiofilm and DrugVirus datasets, respectively. Meanwhile,
SCSMDA also achieves the best performance on AURPC metric
for DrugVirus dataset with 0.4042. SCSMDA wins the 2nd-highest
scores on AUPRC of MDAD and aBiofilm datasets and the values
are 0.6920 and 0.6853. Besides, DTI-CNN wins the 1st rank on
AUPRC metric for two datasets, and their AUPRC scores are 0.7071,
and 0.6997 on MADA and aBiofilm datasets. DIT-CNN achieves the
2nd-best performance on AUC of MDAD, AUC of aBiofilm, AUC of
DrugVirus and AUPRC of the DrugVirus, and their corresponding
scores are 0.9356, 0.9332, 0.8469 and 0.3943, respectively. All the
results are listed in Table 3, which comprehensively demonstrates
that SCSMDA consistently has a better performance than other
baseline approaches.

Model ablation study
SCSMDA learns the embedding of microbes and drugs with the
structure-enhanced contrastive learning strategy, and selects the
most informative samples with self-paced negative sampling
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Table 3. The performance of SCSMDA for predicting microbe–drug associations under different ratios on MDAD, aBiofilm and
DrugVirus datasets

MDAD aBiofilm DrugVirus

Ratios AUC AUPRC AUC AUPRC AUC AUPRC

1:1
GCN [44] 0.8631±0.0059 0.8668±0.0058 0.8878±0.0066 0.8873±0.0095 0.8202±0.0093 0.7985±0.0174
GAT [51] 0.8755±0.0049 0.8772±0.0046 0.8995±0.0045 0.8922±0.0058 0.8033±0.0028 0.7908±0.0018
DTIGAT [52] 0.9185±0.0023 0.9149±0.0066 0.9205±0.0024 0.9179±0.0041 0.8169±0.0102 0.8152±0.0105
NIMCGCN [53] 0.8944±0.0087 0.9016±0.0068 0.9201±0.0066 0.9251±0.0051 0.8319±0.0065 0.8438±0.0468
MMGCN [54] 0.8943±0.0022 0.9033±0.0051 0.9042±0.0032 0.9103±0.0056 0.7946±0.0110 0.7840±0.0139
GCNMDA[13] 0.9299±0.0055 0.9192±0.0094 0.9407±0.0023 0.9291±0.0044 0.8330±0.0063 0.8047±0.0088
DTI-CNN [55] 0.9325±0.0054 0.9242±0.0082 0.9436±0.0010 0.9316±0.0058 0.8581±0.0013 0.8396±0.0162
SCSMDA (Ours) 0.9573±0.0020 0.9464±0.0033 0.9658±0.0026 0.9450±0.0037 0.8834±0.0064 0.8637±0.0096

1:5
GCN [44] 0.8830±0.0027 0.6829±0.0074 0.8808±0.0018 0.6715±0.0047 0.8291±0.0007 0.4845±0.0031
GAT [51] 0.8717±0.0047 0.6325±0.0097 0.9021±0.0062 0.6867±0.0082 0.8169±0.0025 0.4725±0.0138
DTIGAT [52] 0.9097±0.0003 0.7462±0.0056 0.9156±0.0042 0.7565±0.0060 0.8001±0.0022 0.4630±0.0058
NIMCGCN [53] 0.8983±0.0039 0.7339±0.0051 0.9143 ± 0.0115 0.7626±0.0118 0.8424±0.0040 0.5280±0.0061
MMGCN [54] 0.8964±0.0008 0.7295±0.0042 0.9072±0.0010 0.7584±0.0046 0.7791±0.0040 0.4764±0.0129
GCNMDA [13] 0.9274±0.0006 0.7119±0.0082 0.9374±0.0043 0.7623±0.0441 0.8366±0.0054 0.4788±0.0156
DTI-CNN [55] 0.9308±0.0015 0.7545±0.1011 0.9412±0.0006 0.7891±0.0014 0.8466±0.0006 0.5644±0.0045
SCSMDA (Ours) 0.9434±0.0048 0.7607±0.0193 0.9559±0.0026 0.7971±0.0041 0.8757±0.0003 0.5777±0.0046

1:10
GCN [44] 0.8921±0.0065 0.5821±0.0170 0.8974±0.0018 0.5879±0.0035 0.8231±0.0018 0.3255±0.0065
GAT [51] 0.8696±0.0017 0.5324±0.0073 0.8999±0.0015 0.5828±0.0103 0.8089±0.0023 0.3208±0.0094
DTIGAT [52] 0.9085±0.0064 0.6483±0.0264 0.9156±0.0010 0.6419±0.0091 0.7957 ± 0.0012 0.3068±0.0022
NIMCGCN [53] 0.9009±0.0008 0.6256±0.0108 0.9119±0.0022 0.6579±0.0030 0.8414±0.0074 0.3503±0.0076
MMGCN [54] 0.8941±0.0011 0.6244±0.0031 0.9044±0.0005 0.6463±0.0028 0.7765±0.0048 0.3596±0.0086
GCNMDA[13] 0.9310±0.0028 0.5939±0.0234 0.9415±0.0010 0.6201±0.0033 0.8304±0.0055 0.3139±0.0139
DTI-CNN [55] 0.9356±0.0011 0.7071±0.0010 0.9332±0.0017 0.6997±0.0081 0.8649±0.0020 0.3943±0.0080
SCSMDA (ours) 0.9377±0.0015 0.6921±0.0069 0.9481±0.0009 0.6853±0.0049 0.8729±0.0017 0.4042±0.0016

Note: The best results are marked in bold and the 2nd-best ones are marked as underlined.

strategy. Here we conduct the model ablation study to investigate
the effect of each component on SCSMDA model. Here we mainly
select three components which are the similarity-network-based
embedding learning component (SN), the meta-path-induced
network embedding learning component (MP) and the self-
paced negative sampling strategy component (SP). The ablation
study is performed as SCSMDA without SN component (SCS w/o
SN), SCSMDA without MP component (SCS w/o MP), SCSMDA
without SP component (SCS w/o SP) and SCSMDA with all
these components. The corresponding results are represented
in Figure 5.

Results on all these three datasets show that SN, MP and
SP are all essential components for SCSMDA. Specifically, on
MDAD dataset, SCSMDA wins the best performance on the five
evaluation metrics. On MDAD dataset, the scores on ACC, AUC,
AUPRC, MCC and F1 metric are 0.8791, 0.9573, 0.9464, 0.7261 and
0.8528, respectively. For aBiofilm dataset, the scores of ACC, AUC,
AUPRC, MCC and F1 metrics are 0.8919, 0.9658, 0.9450, 0.7393,
and 0.8592, respectively. On DrugVirus dataset, the values on ACC,
AUC, AUPRC, MCC and F1 metrics are 0.8133, 0.8834, 0.8637, 0.6141
and 0.7981, respectively.

For other prediction models, SCSMDA w/o SP achieves the 2nd-
best performance overall, whereas the performance of SCSMDA
w/o SN model is the worst in all the models. The correspond-
ing results for other modes are displayed in Figure 5 and we
don’t repeat them anymore. Overall, the embedding of nodes
learning from the similarity-network-based plays a major role in
the performance of SCSMDA. Meanwhile, the structure-enhanced
learning component plays an essential role in improving the
performance of SCSMDA. The structure-enhanced contrasting

learning strategy is effective in improving the performance of
SCSMDA.

The statistical significance report on AUC values
The statistical significance is an effective manner for verifying
the credibility and stability of the results of SCSMDA. Therefore,
we employ the one-way ANOVA model [56, 57] to investigate the
statistical significance of the results of all the MDA prediction
approaches. Specifically, all these MDA prediction approaches are
performed on the 5-CV experiments and obtain their correspond-
ing AUC values (Table 4). The analysis results are demonstrated
in Figure 6.

The results show that the P-values between SCSMDA and other
baseline approaches (GCNMDA, GCN, GAT, DTI-GAT, NIMCGCN,
MMGCN, DTI-CNN and Graph2MDA) are 9.9e-7, 6.2e-12, 6.5e-
07, 3.4e-04, 9.9e-9, 7.3e-12, 2.2e-7 and 1.1e-4 on MDAD datasets,
which all show SCSMDA has statistical significance values accord-
ing to one-way ANOVA analysis. Besides, we also display the P-
values between baseline approaches. The statistical significance
analysis results on aBiofilm and DrugVirus are all displayed in
Figure 6B and C and we don’t repeat them anymore.

Embedding size analysis on SCSMDA
SCSMDA learns the embeddings of microbes and drugs with
the structure-enhanced contrastive learning strategy. Since the
embedding size of microbes and drugs plays an important role in
SCSMDA, we conduct this experiment and evaluate its impact on
SCSMDA with five metrics which are ACC, AUC, AUPRC, MCC and
F1. Here, we set the embeddings size of microbes and drugs as 32,
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Figure 5. The ablation study for SCSMDA. SCSMDA w/o SN, SCSMDA w/o MP and SCSMDA w/o SP indicate that SCSMDA doesn’t contain similarity-
network-based embedding learning component, meta-path-induced network embedding learning component and the self-paced negative sampling
strategy component, respectively.

Table 4. AUC values of baseline approaches under the 5-CV experiment on each dataset

Dataset Iteration GCN GAT DTIGAT NIMCGCN MMGCN GCNMDA DTI-CNN Graph2MDA SCSMDA (ours)

MDAD 1 0.8685 0.8873 0.8692 0.8892 0.8934 0.9326 0.9326 0.9077 0.9562
2 0.8715 0.8899 0.9134 0.9001 0.8938 0.9261 0.9361 0.9022 0.9583
3 0.8702 0.8856 0.9136 0.9018 0.8940 0.9297 0.9358 0.8617 0.9603
4 0.8729 0.8695 0.9145 0.899 0.8937 0.9328 0.9319 0.9089 0.9563
5 0.8738 0.8616 0.9139 0.8933 0.8941 0.9280 0.9303 0.8756 0.9617

aBiofilm 1 0.8987 0.8962 0.9192 0.9009 0.9083 0.9382 0.9443 0.9164 0.9667
2 0.8997 0.8758 0.9196 0.9117 0.9077 0.9398 0.9454 0.9212 0.9614
3 0.9009 0.8898 0.9207 0.9147 0.9081 0.9424 0.9448 0.9125 0.9661
4 0.8999 0.9038 0.9206 0.9193 0.9084 0.9412 0.9427 0.8894 0.9664
5 0.9031 0.9048 0.9198 0.8964 0.9082 0.9422 0.9406 0.9272 0.9669

DrugVirus 1 0.8349 0.8036 0.8184 0.8427 0.7931 0.8349 0.8612 0.7725 0.8934
2 0.8353 0.7956 0.8203 0.8415 0.7937 0.7901 0.8611 0.7981 0.8841
3 0.8356 0.7959 0.8190 0.8440 0.7962 0.8413 0.8566 0.7802 0.8845
4 0.8349 0.7876 0.8230 0.8372 0.8237 0.8264 0.8574 0.7899 0.8888
5 0.8349 0.7902 0.8164 0.8346 0.8215 0.8171 0.8611 0.7991 0.8865

Figure 6. The statistical significance report with one-way ANOVA model. (A) P-values on MDAD dataset, (B) P-values on aBiofilm dataset,(C) P-values on
DrugVirus dataset.

62, 128, 256 and 512, respectively, and the corresponding results
are shown in Table 5.

Specifically, on MDAD dataset, the ACC, AUC, AUPRC and F1
values are 0.8719, 0.9573, 0.9464 and 0.8528, which are the highest
scores when the embedding size is 128. The highest score on MCC
is 0.7365 when the embedding size is 64. For aBiofilm dataset, the
highest scores for ACC, AUC, MCC and F1 are 0.8919, 0.9658, 0.7393
and 0.8592 when the embedding size is 128 and the highest value
for AUPRC is 0.9458 when the embedding size is 64. For DrugVirus
dataset, SCSMDA performs best on ACC, AUC, AUPRC, MCC and F1
when the embedding size is 64, 64, 128, 256 and 128, respectively.

From the results, we can find that the embedding size affects the
performance of SCSMDA model. SCSMDA achieves the highest
scores when the embedding size is 128 overall. As a result, we
adopt the embedding size as 128 for SCSMDA.

Parameter sensitivity analysis
For SCSMDA model, some crucial parameters affect its perfor-
mance. Here we mainly focus on five parameters: the number of
positive pairs, the number of GCN layers, the number of MLP lay-
ers, the number of bins and the learning rate. The corresponding
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Table 5. The performance of SCSMDA under different embedding sizes on MDAD, aBiofilm and DrugVirus datasets.

Dataset Embedding size ACC AUC AUPRC MCC F1

MDAD 16 0.8582± 0.0052 0.9478±0.0031 0.9243±0.0045 0.7329±0.0121 0.8409±0.0027
32 0.8659±0.0036 0.9506±0.0019 0.9364±0.0044 0.7352±0.0062 0.8485±0.0027
64 0.8701±0.0045 0.9548±0.0022 0.9409±0.0027 0.7365±0.0061 0.8504±0.0036
128 0.8791±0.0054 0.9573±0.0020 0.9464±0.0033 0.7261±0.0025 0.8528±0.0008
256 0.8651±0.0030 0.9511±0.0043 0.9389±0.0068 0.7008±0.0249 0.8477±0.0181
512 0.8304±0.0131 0.9446±0.0035 0.9330±0.0044 0.7093±0.0156 0.8491±0.0095

aBiofilm 16 0.8824±0.0013 0.9538±0.0028 0.9491±0.0082 0.7316±0.0013 0.8627±0.0081
32 0.8907±0.0077 0.9633±0.0011 0.9430±0.0029 0.7384±0.0161 0.8590±0.0112
64 0.8915±0.0070 0.9644±0.0041 0.9485±0.0049 0.7367±0.0077 0.8576±0.0037
128 0.8919±0.0017 0.9658±0.0026 0.9450±0.0037 0.7393±0.0041 0.8592±0.0031
256 0.8864±0.0029 0.9632±0.0003 0.9426±0.0006 0.7317±0.0060 0.8542±0.0035
512 0.8762±0.0072 0.9560±0.0085 0.9388±0.0071 0.7249±0.0004 0.8371±0.0007

DrugVirus 16 0.8071±0.0100 0.8748±0.0088 0.8469±0.0121 0.6002±0.0172 0.7845±0.0059
32 0.8165±0.0132 0.8843±0.0007 0.8575±0.0109 0.6027±0.0117 0.7899±0.0048
64 0.8196±0.0080 0.8861±0.0110 0.8572±0.0173 0.6109±0.0272 0.7955±0.0148
128 0.8133±0.0082 0.8834±0.0064 0.8637±0.0096 0.6141±0.0063 0.7981±0.0016
256 0.8096±0.0032 0.8769±0.0028 0.8611±0.0069 0.6218±0.0092 0.7979±0.0076
512 0.8031±0.0024 0.8713±0.0026 0.8624±0.0014 0.5974±0.0212 0.7881±0.0121

Note: The best results are marked in bold.

Figure 7. The performance of SCSMDA under different numbers of positive pairs on MDAD, aBiofilm and DrugVirus datasets.

experiments are performed and the results are all evaluated with
ACC, AUC, AUPRC, MCC and F1.

The 1st parameter is the number of positive pairs for structure-
enhanced contrastive learning strategy. We vary the number of
positive pairs from {1,2,4,6,8,10,12,14} and conduct the experi-
ments on all three datasets. The results are presented in Figure 7.
Specifically, on the MDAD dataset, the values of ACC, AUC, AUPRC,
MCC and F1 first increase gradually and then slightly decreases
with positive sample number ranging from {1,2,4,6,8,10,12,14}.
When the threshold is 10, the scores are highest and the val-
ues are 0.8791, 0.9573, 0.9464, 0.7261 and 0.8528 on ACC, AUC,
AUPRC, MCC and F1, respectively. For aBiofilm and DrugVirus
datasets, their results are similar to those on MDAD dataset and
we don’t repeat them anymore. It should be noted that the eval-
uation scores are almost the lowest when the number of positive
pairs is 1. This could further confirm that our novel positive-
pair selection strategy is helpful in improving the performance
of SCSMDA. As a result, we set the number of positive pairs
as 10.

The 2nd parameter is the number of the MLP layer. MLP is
employed as the classifier to predict MDAs, which directly affects
the performance of the SCSMDA. It is very critical to choose a
proper layer number for MLP. The corresponding results (Figure 8)
fully indicate that SCSMDA achieves the best performance when
the number of the MLP layer is 1. Previous studies also find
that too many MLP layers may lead to over-smoothing [58,
59], which seriously affects the performance of the prediction
model. SCSMDA achieves its best results when the number of
MLP layers is 1, which is consistent with the previous study.
The 3rd parameter is the number of the GCN layer. GCN is
employed to learn the embeddings of microbes and drugs, which
is decisive to the prediction accuracy of SCSMDA. The results
under different GCN lay numbers are presented in Figure 8 The
best performance is achieved when the number of GCN layers
is 1.

The last two parameters are the learning rate and the number
of bins. The learning rate is a hyperparameter that controls how
much to change one model in response to the estimated error

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/2/bbac634/7009077 by Zhengzhou U

niversity user on 14 Septem
ber 2023



14 | Tian et al.

Figure 8. The performance of SCSMDA under different numbers of MLP layers and GCN layers on MDAD, aBiofilm and DrugVirus datasets.

[60]. Choosing a proper learning rate is challenging, since a small
value may result in a long training process, while a too-large value
may result in learning an unstable training process. As a result,
SCSMDA searches on learning rate from {1e-2, 1e-3, 5e-3, 1e-4,
5e-4, 1e-5} and we evaluate the performance of SCSMDA under
these different learning rates. The results are shown in Figure 9.
We observe that performance of SCSMDA first increases and then
slightly decreases with the weights from 1e-1 to 1e-5. SCSMDA
achieves the best results when the learning rate is 5e-4. Lastly,
for the number of bins which is the hyperparameter in self-paced
negative sampling strategy process, SCSMDA chooses the values
from {2, 4, 6, 8, 10,12} and the corresponding results are presented
in Figure 9. SCSMDA obtains the best scores when the number of
bins equals 10.

Visualization and interpretation for the
embeddings of microbe–drug pairs learned by
SCSMDA
To further demonstrate the outstanding ability of SCSMDA in
learning the embedding of nodes, we conduct the visualization
experiment on aBiofilm dataset. Specifically, with the learned
embeddings of microbes and drugs, novel embeddings for
microbe–drug pairs are generated based on the Hadamard
products. If one microbe and one drug have an association
relationship, this microbe–drug pair will be labeled with a
positive pair. Otherwise, it will be labeled with a negative pair.
All the embeddings of microbe–drug pairs are plotted into a two-
dimensional space using t-SNE tool [61]. The visualization results
are displayed in Figure 10.

It can be seen that the positive pairs and the negative pairs
are gradually distinguished with the increase of the epochs. The
embeddings of positive pairs and the negative pairs are in chaos
when the epoch number is 1. The embedding distribution is grad-
ually clear with the epochs increase. Finally, the positive pairs (red
points) and the negative pairs (blue points) are almost separated
when the epochs equal 100. Meanwhile, it should be noted that
some red and green dots are still mixed in some areas, indicating
that the decision boundary is very difficult in microbe–drug asso-
ciation prediction task. This observation further confirms that
the learned embeddings of microbe–drug pairs are discriminative
and interpretable, which improves the accuracy of SCSMDA in
predicting MDAs.

Running time of SCSMDA and baseline
approaches
To fully evaluate the execution efficiency of SCSMDA as well as
the comparison approaches, we conduct the 5-CV experiment on
the three datasets for each prediction model and compare their
corresponding running time. The 5-CV experiments were con-
ducted five times independently and their corresponding results
are all displayed in Table 6.

The results indicate that method DIT-CNN requires the short-
est running time, whereas Graph2MDA needs the longest running
time. The average running time on MDAD, aBiofilm and DrugVirus
datasets for DIT-CNN is 10, 10 and 4s. The average running time
on MDAD, aBiofilm and DrugVirus datasets for Graph2MDA is
788, 1261 and 52s. For our proposed model SCSMDA, its average
running time on MDAD, aBiofilm and DrugVirus is 342, 450 and
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Figure 9. The performance of SCSMDA under different thresholds for learning rate and number of Bins on MDAD, aBiofilm and DrugVirus datasets.

Figure 10. Visualization of the learned microbe–drug embeddings by SCSMDA on aBiofilm under different epochs.

134s, respectively. The results illustrate that our proposed method
could complete training and prediction tasks within an accept-
able time.

Case study
To comprehensively verify the ability of SCSMDA in finding novel
MDAs, we perform case studies on two popular antimicrobial
drugs ciprofloxacin and moxifloxacin, which is the same as the
previous research [15]. Specifically, for each target drug, all the
known microbe–drug associations will be set to unknown, and
then all the candidate microbes will be sorted in a descending
manner according to their scores predicted by SCSMDA. Lastly,
we screen out the top-20 ranked microbes and verify them by
published literature. The case study results for ciprofloxacin and
moxifloxacin are displayed in Tables 7 and 8.

Drug ciprofloxacin belongs to a class of drugs called quinolone
antibiotics. It usually is used to treat a variety of bacterial
infections such as urinary tract infections and pneumonia [62].
Previous studies have indicated that ciprofloxacin has a close
relationship with many human microbes. For example, it is

reported that Candida albicans and Staphylococcus aureus together
could result in biofilm formation and increase antimicrobial
resistance. Daniel [63] fully accessed the susceptibility between
ciprofloxacin and Salmonella and found that ciprofloxacin sus-
ceptibility was highly dependent on serotype. Besides, Mercedes
[64] discovered that the activity of ciprofloxacin against Bacillus
subtilis species depends on the drug’s interaction with its target
enzymes. The results for other predicted microbes are displayed
in Table 7 and 16 out of top 20 predicted candidate microbes
related to ciprofloxacin can be confirmed by literature.

Drug moxifloxacin is also a common antibiotic, which is always
employed to treat bacterial infections including pneumonia, con-
junctivitis, endocarditis, tuberculosis and sinusitis [65, 66]. Moxi-
floxacin could inhibit the reproduction growth rate and life cycle
of broad-spectrum bacteria. For example, Escherichia coli is a bacte-
ria that normally lives in the intestines of both healthy people and
animals. Axel [67] suggested that moxifloxacin had a potential
impact on bactericidal activities of Escherichia coli. Staphylococcus
aureus is a Gram-positive spherically shaped bacterium, a member
of the Bacillota. Dilek [68] stated that moxifloxacin had enhanced
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Table 6. Running time (seconds) of SCSMDA and other baseline approaches on MDAD, aBiofilm and DrugVirus datasets.

Datasets Rounds GCN GAT DTIGAT NIMCGCN MMGCN GCNMDA DTI-CNN Graph2MDA SCSMDA(ours)

MDAD 1 98 293 296 114 116 303 10 786 342
2 109 296 295 121 114 302 10 788 341
3 106 299 289 118 115 302 9 790 346
4 100 296 295 121 117 303 10 788 340
5 109 297 295 119 116 311 9 787 340
AVE 104 296 294 118 116 304 10 788 342

aBiofilm 1 127 393 379 161 170 399 11 1255 417
2 143 387 381 162 147 394 9 1266 589
3 142 386 385 164 147 394 10 1256 418
4 144 386 383 187 148 395 11 1261 417
5 145 387 382 163 147 395 10 1269 411
AVE 140 388 382 167 152 395 10 1261 450

DrugVirus 1 16 69 69 19 17 28 4 50 132
2 15 71 66 19 16 28 4 53 136
3 14 71 68 17 17 28 4 53 135
4 15 66 67 18 17 28 4 53 136
5 15 70 70 17 16 28 4 52 130
AVE 15 70 68 18 17 28 4 52 134

Note: AVE denotes the average running time of the five 5-CV experiment for each model.

Table 7. The top-20 predicted Ciprofloxacin-associated microbes by SCSMDA

Microbe name Rank Evidence Microbe name Rank Evidence

Candida albicans 1 PMID:31471074 Listeria monocytogenes 11 PMID:28355096
Streptococcus mutans 2 PMID:30468214 Bacillus cereus 12 PMID:8448312
Salmonella enterica 3 PMID:26933017 Burkholderia pseudomallei 13 PMID:24502667
Staphylococcus epidermidis 4 PMID:28481197 Streptococcus epidermidis 14 Unconfirmed
Burkholderia cenocepacia 5 PMID:27799222 Campylobacter jejuni 15 PMID:11920303
Bacillus subtilis 6 PMID:15194135 Agrobacterium tumefaciens 16 Unconfirmed
Serratia marcescens 7 PMID:23751969 Vibrio vulnificus 17 PMID:24978586
Acinetobacter baumannii 8 PMID:25147676 Staphylococcus epidermidis 18 PMID:10632381
Streptococcus sanguis 9 PMID:11347679 Candida tropicalis 19 Unconfirmed
Vibrio harveyi 10 PMID:27247095 Actinomyces oris 20 Unconfirmed

Table 8. The top-20 predicted Moxifloxacin-associated microbes by SCSMDA

Microbe name Rank Evidence Microbe name Rank Evidence

Escherichia coli 1 PMID:31542319 Burkholderia cenocepacia 11 PMID:28355096
Streptococcus mutans 2 PMID:29160117 Serratia marcescens 12 Unconfirmed
Staphylococcus aureus 3 PMID:12654680 Burkholderia pseudomallei 13 PMID:24502667
Pseudomonas aeruginosa 4 PMID:31691651 Streptococcus epidermidis 14 Unconfirmed
Staphylococcus epidermidis 5 PMID:11249827 Acinetobacter baumannii 15 PMID:12951327
Vibrio harveyi 6 Unconfirmed Salmonella enterica 16 PMID:22151215
Staphylococcus epidermidis 7 PMID:31516359 Vibrio cholerae 17 Unconfirmed
Enterococcus faecalis 8 PMID:31763048 Vibrio vulnificus 18 PMID:10632381
Listeria monocytogenes 9 PMID:28739228 Klebsiella pneumoniae 19 PMID:27257956
Proteus mirabilis 10 PMID:15077996 Actinomyces oris 20 Unconfirmed

potency against S. aureus. Besides, some studies confirmed that
bactericidal activity of moxifloxacin is against S. aureus strains in
vitro [69]. We display the top-20 predicted candidate microbes in
Table 8 and 15 of them can be verified by previous publications.
Case studies on these two drugs further indicate that SCSMDA has
a good performance in identifying novel MDAs.

Besides, SCSMDA conducts the case study for each microbe and
drug on the three public datasets. The correspondence results are
available in the GitHub and we don’t repeat them anymore.

Conclusion
Recent studies have comprehensively shown that microbes resid-
ing within and upon human bodies play critical roles in human
health. Accurately identifying the microbe–drug associations is
a crucial step in precision medicine. Here we propose a novel
approach named SCSMDA to predict microbe–drug associations
which achieves the best performance among all the baseline
approaches. SCSMDA employs the meta-path-induced networks
of microbes and drugs to enhance their feature representations
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learned from the similarity networks with the contrastive learn-
ing strategy, which could obtain their deep-level representations.
Besides, SCSMDA utilizes the self-paced negative sampling strat-
egy to select the most informative negative samples for training
the MLP classifier more efficiently.

To comprehensively evaluate the performance of SCSMDA as
well as the baseline methods, we conduct the 5-CV experiment
on three public datasets. Experimental results show that the
proposed method wins the highest scores on the AUC and AUPRC
evaluation metrics. We also conduct the comparison experiments
under different ratios (# positive sample: # negative samples=1:1,
1:5 and 1:10). SCSMDA achieves the best performance on these
datasets. Besides, the model ablation experiment is adopted to
further verify the effectiveness of the structure-enhanced con-
trastive learning strategy and self-paced negative sampling strat-
egy. Meanwhile, parameter sensitivity experiments are employed
to tune the best parameters for SCSMDA. In the end, the results
of case studies on two common drugs could be supported by
published literature, which further confirms the advantages of
SCSMDA in discovering novel MDAs.

Next, we can do some work from the following two aspects.
Firstly, some other biological entities such as genes and proteins
could be employed to establish a more comprehensive knowledge
graph related to microbes and drugs. We can learn the embedding
of microbes and drugs with the help of knowledge graphs aiming
to improve the prediction accuracy of the MDA prediction model.
Secondly, since association relationship predictions between bio-
logical entities are one of the foundation tasks in computational
biology, we can apply SCSMDA to other link prediction problems
such as drug-drug interaction and miRNA–disease association
prediction.

Key Points

• SCSMDA constructs the meta-path induced networks for
microbes and drugs by utilizing their different meta-
paths with semantic meanings.

• SCSMDA employs the structure-enhanced contrastive
learning strategy to obtain the effective representations
of microbes and drugs.

• SCSMDA adopts the self-paced negative sampling strat-
egy to select the most informative negative samples for
training the MLP classifier.

• Results on these three datasets comprehensively indi-
cate that SCSMDA outperforms seven other baseline
methods in microbe–drug association prediction task.
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