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A B S T R A C T

Knowledge Graph Embedding (KGE) aims to retain the intrinsic structural information of knowledge graphs
(KGs) via representation learning, which is critical for various downstream tasks including personalized
recommendations, intelligent search, and relation extraction. The graph convolutional network (GCN), due
to its remarkable performance in modeling graph data, has recently been studied extensively in the KGE field.
However, when learning entity representations, most attention-based GCN approaches treat neighborhoods as
a whole to measure their importance without considering the direction information of relations. Additionally,
these approaches make relation representations perform self-update via a learnable matrix, resulting in ignoring
the impact of neighborhood information on representation learning of relations. To this end, this study presents
an innovative framework, namely learning knowledge graph embedding with a dual-attention embedding
network (D-AEN), to jointly propagate and update the representations of both relations and entities via fusing
neighborhood information. Here the dual attentions consist of a bidirectional attention mechanism and a
relation-specific attention mechanism for jointly measuring the importance of neighborhoods in respectively
learning entity and relation representations. Thus D-AEN enables elements like relations and entities to
interact well semantically, which makes their learned representations retain more effective information of
KGs. Extensive experimental results on three standard link prediction datasets demonstrate the superiority of
D-AEN over several state-of-the-art approaches.
1. Introduction

Knowledge graphs (KGs) play a crucial role in various knowledge-
driven intelligent applications including question answering (Hu, Zou,
Yu, Wang, & Zhao, 2017; Huang, Zhang, Li, & Li, 2019), recommen-
dation systems (Rosa, Schwartz, Ruggiero, & Rodríguez, 2018; Shao,
Li, & Bian, 2021; Wang et al., 2019), information retrieval (Chen, Tu,
Lv, & Chen, 2018; Li, Li, Shang, & Shen, 2019), etc. During the past
decades, numerous types of KGs have been developed for facilitating
these applications, such as NELL (Carlson et al., 2010), Freebase (Bol-
lacker, Evans, Paritosh, Sturge, & Taylor, 2008), DBpedia (Auer et al.,
2007), and YAGO3 (Mahdisoltani, Biega, & Suchanek, 2014). The
knowledge information with multiple relations is currently stored in
KGs as directed graphs whose edges and nodes indicate relations and
entities respectively. Indeed, KGs are usually represented as multiple
knowledge triples (i.e., facts) like (ℎ, 𝑟, 𝑡), which denotes as a head
entity ℎ, a tail entity 𝑡, and a relation 𝑟 connecting them, e.g., (New
York, located_in, The United States).

Despite large amounts of relations, entities, and triples, KGs may
still suffer from incompleteness with newly added knowledge, which
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has motivated massive studies on knowledge graph completion
(i.e., Knowledge Graph Embedding, KGE). KGE learns distributed repre-
sentations (embeddings) of relations and entities to preserve the intrin-
sic structural information of KGs for predicting missing facts. Current
KGE methods can be generally categorized into translational mod-
els (Bordes, Usunier, Garcia-Duran, Weston, & Yakhnenko, 2013; Ji,
He, Xu, Liu, & Zhao, 2015; Lin, Liu, Sun, Liu, & Zhu, 2015; Sun, Deng,
Nie, & Tang, 2018; Wang, Zhang, Feng, & Chen, 2014; Zhang, Cai,
Zhang and Wang, 2020), tensor factorization models (Nickel, Rosasco,
& Poggio, 2016; Trouillon, Welbl, Riedel, Gaussier, & Bouchard, 2016;
Yang, Yih, He, Gao, & Deng, 2015), and neural networks models (Dai
Quoc Nguyen, Nguyen, & Phung, 2018; Dettmers, Minervini, Stene-
torp, & Riedel, 2018; Jiang, Wang, & Wang, 2019; Vashishth, Sanyal,
Nitin, Agrawal and Talukdar, 2020). These models embed relations
and entities into a continuous vector space and validate triples based
on the vector representations of relations and entities via a scoring
function (Zeb, Haq, Zhang, Chen, & Gong, 2021). However, most
of them treat knowledge facts independently and cannot utilize the
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structural information of given KGs to enforce the reliability of the
embedded representations of relations and entities.

To incorporate the structural information of KGs into knowledge
representation learning, a series of graph neural network-based (GNN-
based) methods have been proposed. Graph convolutional network-
based (GCN-based) methods include VR-GCN (Ye, Li, Fang, Zang, &
Wang, 2019), WGCN (Shang et al., 2019), R-GCN (Schlichtkrull et al.,
2018), and so on. They define a propagation function to recursively
aggregate the information of neighbor entities, and implement the
convolutional operation on KGs. Meanwhile, they stack multi-layer
GCNs to capture the multi-hop relations for aggregating the informa-
tion of higher-order neighbor entities. However, GCN-based methods
always aggregate the information of neighbor entities with the same
importance. To this end, graph attention network-based (GAT-based)
methods (Li, Liu, Zhang, Liu and Xiong, 2021; Li, Wang, Feng, Niu
and Zhang, 2021; Nathani, Chauhan, Sharma, & Kaul, 2019; Zhang
et al., 2020; Zhao et al., 2021) incorporate the attention mechanism
into GCN for selectively aggregating the information of neighbor en-
tities, and greatly improving the performance. Nevertheless, to the
best of our knowledge, few GNN-based works incorporate the direction
information of relations into measuring the importance of neighbor
entities for representation learning of entities. In addition, for updating
relation representations, most GNN-based methods focus only on the
relations themselves whereas ignoring the information of its related
neighborhoods, which may lead to some semantic loss.

To overcome the obstacles above, we propose to fully capture the
information of KGs for representation learning of both relations and
entities. A KG contains massive semantic information of knowledge
and depicts their linking relations in a visualized graph structure,
which is beneficial for the process of representation learning. With the
development of GNN in the KGE field, the neighborhood information
of a central entity in KGs is utilized for the aggregation of its repre-
sentation since different neighbor entities link to the central entity via
a specific relation indicates that different knowledge facts about the
central entity. As shown in Fig. 1(a), the central entity ‘Christopher
Nolan’ is embraced by some neighbor entities with incoming and
outgoing relations. Taking the example of learning the representation of
‘Christopher Nolan’, we can observe that: (i) ‘Christopher Nolan’ links
to different neighbor entities, among which neighbor entity ‘Director’
may be more representative than others since ‘Christopher Nolan’ is
known around the world as a film director, which illustrates that dif-
ferent neighborhoods may present different contributions for learning
the representation of a central entity. (ii) Neighbor entities ‘London’
and ‘UK’ with outgoing relations ‘Born_in’ and ‘Nationality’ indicates
that ‘London’ is probably a part of ‘UK’. In addition, we can infer from
the neighbor entity ‘Inception’ with an incoming relation ‘Directed_by’
that ‘Christopher Nolan’ may have directed more than one movie. This
observation demonstrates that neighbor entities with different types
of relations (incoming and outgoing) may present different semantic
meanings for a central entity. Thus, a bidirectional attention mecha-
nism is proposed to measure the importance of neighborhood for a
central entity based on the directions of relations. Following Vashishth,
Sanyal, Nitin and Talukdar (2020), we aggregate the information of
neighborhoods with outgoing relations for a central entity and reverse
the incoming relations. As illustrated in Fig. 1(b), the incoming rela-
tions (‘Younger_brother_of’ and ‘Directed_by’) from neighbor entities
to the central entity ‘Christopher Nolan’ are reversed. The relations
in KGs can therefore be intuitively divided into original and reversed
types. Specifically, our proposed bidirectional attention mechanism for
learning entity representations first splits the neighbor entities of a
central entity into two sets based on the relation types (original or
reversed types), then calculates the attention scores of neighbor entities
belonging to the two sets respectively for aggregating the neighborhood
information. Moreover, learning relation representations can also be
inspired by some impressive observations from Fig. 1(a). For instance:
(i) Because relations ‘Has_gender’ and ‘Born_in’ have different semantic
2

Fig. 1. A subgraph of a KG. (a) a central entity ‘Christopher Nolan’ connects with its
neighbors by different original relations. (b) a variant of (a) where the neighbors with
incoming relations of ‘Christopher Nolan’ are reversed to outgoing relations. The solid
and dotted arrows denote the original and reversed relations respectively.

meanings in the KG, learning different representations can model their
differences, which manifests the necessity of representation learning
of relations. (ii) Because relations ‘Nationality’ and ‘Career’ are in
different contexts (neighborhoods), their related neighborhoods may
present some specific semantic information, thereby contributing to
the representation learning of them. In turn, learning relation repre-
sentations with neighborhood information can tremendously facilitate
interactions between head and tail entities. (iii) Both ‘Christopher
Nolan’ and ‘Jonathan Nolan’ are connected to entity ‘Male’ via re-
lation ‘Has_gender’, which shows different neighborhoods of relation
‘Has_gender’. This example suggests that different neighborhoods of a
given relation may contribute diversely to the representation learning
of the relation. From the aforementioned examples, a relation-specific
attention mechanism is devised for measuring the importance of neigh-
borhoods for learning relation representations. It is worth noting that
the bidirectional attention mechanism for learning entity representa-
tions and the relation-specific attention mechanism for learning relation
representations work jointly via an attention-based GCN encoder. We
summarize our specific works as below:

• We propose D-AEN, an innovative encoder framework where the
representations of both relations and entities are jointly learned
to promote optimization of each other in an end-to-end way.
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• A bidirectional attention mechanism is incorporated into learning
entity representations by respectively measuring the importance
of neighborhoods with different relation directions.

• A relation-specific attention mechanism is devised for measuring
the importance of neighborhoods in learning relation representa-
tions.

• Extensive experimental results demonstrate that D-AEN signifi-
cantly outperforms other representative baseline methods.

. Related work

.1. Graph neural networks

GNNs develop a unified framework for representation learning on
rbitrary graphs with deep neural networks (DNNs). Hou et al. (2019),
rakash and Tucker (2021), Scarselli, Gori, Tsoi, Hagenbuchner, and
onfardini (2008), and Xu, Hu, Leskovec, and Jegelka (2018) show the

xpressive performance of GNNs on modeling various graph structures.
ue to the successful developments of Convolutional Neural Networks

CNNs) on modeling euclidean data, Bruna, Zaremba, Szlam, and LeCun
2014) first propose a spectral method to implement convolutional op-
ration on non-euclidean data (i.e. graphs). Along with this work, Kipf
nd Welling (2017) develops GCN by defining a convolutional opera-
ion on graphs in the spatial domain. Schlichtkrull et al. (2018) further
eeps the idea of GCN and generalizes it on relational data and puts
orward R-GCN. WGCN (Shang et al., 2019), CompGCN (Vashishth,
anyal, Nitin and Talukdar, 2020), and VR-GCN (Ye et al., 2019) devise
ifferent propagation formulae to enrich the framework of R-GCN. In
ddition, considering that graph data can be divided into two parts
ccording to certain rules, many GNN models based on dual graphs
ave been developed for various tasks. Li et al. (2020) addresses the
ssue of object-tag prediction by dividing a KG into an object graph and

tag graph to respectively encode high-order proximities for objects
nd tags. Splitting an entity’s neighbors into two sets based on the
irection of relations, Zeb et al. (2021) devises a dual weighted GCN
ramework based on WGCN to learn two different representations for
ntities in the KGE field. Guo et al. (2021) generates an attribute graph
nd a collaborative graph of users and items to respectively perform
raph convolution for CTR prediction. Wu et al. (2021) takes into
ccount both the topology and attributes of nodes in hypergraphs and
roposes a Dual-view HyperGraph Neural Network for node classifica-
ion. Concurrently, owing to the powerful advantages of the attention
echanism in Computer Vision (CV) and Natural Language Processing

NLP), Veličković et al. (2018) proposes GATs by incorporating an at-
ention mechanism into GCNs for node classification, which selectively
ggregates the information of neighbors for each node.

Recently, several advanced extensions of GAT have been developed
o model KGs for the KGE task. For example, Nathani et al. (2019)
ssigns an attention value to each triple for fusing the neighborhood
nformation for a central entity. Zhang, Zhuang et al. (2020) intro-
uces a two-level hierarchical attention mechanism that corresponds
o the relations and tail entities. Li, Wang et al. (2021) aggregates the
nformation of both direct neighbors and multi-hop neighbors with a
lobal attention mechanism. Zhao et al. (2021) incorporates the global
nformation into the GAT model by estimating the entity importance
ased on an attention-based global random walk algorithm. Li, Liu
t al. (2021) devises a relation-path-based attention mechanism to
easure the importance of neighbor entities with different relations.
owever, these methods ignore the direction information of relations
ith measuring the importance of neighbors. In addition, none of them

onsider the impact of neighborhoods on representation learning of
elations, thereby limiting the power of relation representations. Our
roposed D-AEN not only incorporates the direction information into
he measurement of neighbor importance for representation learning of
ntities but also fully considers the impact of neighborhoods on the rep-
esentation learning of relations, which demonstrates that both entity
mbeddings and relation embeddings contribute to the optimization of
3

ach other.
2.2. Knowledge graph embedding

KGE focuses on learning distributed representations of relations
and entities for deducing missing triples, and in turn, updating the
representations of both relations and entities. KGE predicts the validity
of given triples by a scoring function. According to the types of scoring
functions, existing KGE methods can be generally divided into trans-
lational methods, tensor factorization methods, and neural network
methods.

Translational methods define a scoring function on distance by
regarding relations as a translation from heads to tails. TransE (Bordes
et al., 2013), the most classic translational method, shows excellent
performance on modeling 1-to-1 relations, while still suffering from
some drawbacks on modeling complex relations. Consequently, a series
of variants including TransR (Lin et al., 2015), TransD (Ji et al., 2015),
and TransH (Wang et al., 2014) are developed to extend TransE by
introducing different vector spaces to embed relations and entities.
RotatE (Sun et al., 2018) introduces the idea of rotation to regard
the relations as a rotation from heads to tails. Especially, it trans-
forms relations and entities into a complex space and generates two
representations for all relations and entities corresponding to real and
imaginary parts. ModE (Zhang, Cai et al., 2020) preserves the phase
and modulus information of relations and entities by modeling KGs
in a polar coordinate system. Tensor factorization methods define a
multiplicative function over the representations of relations and entities
to score triples. DistMult (Yang et al., 2015) is a basic tensor factor-
ization method that defines a bilinear operation on the embeddings
of relations and entities to tackle the KGE task. ComplEx (Trouillon
et al., 2016) generalizes DistMult using a complex embedding space to
replace the real embedding space and can model asymmetric relations
by a conjugate operation on tail entity embeddings. HolE (Nickel et al.,
2016) applies a circular correlation operation to model asymmetric
relations. TuckER (Balazevic, Allen, & Hospedales, 2019) adopts Tucker
decomposition (Tucker et al., 1964) to model the binary representations
of knowledge triples and then proposes a straightforward yet powerful
linear model. Neural network methods capture the nonlinear features
of relations and entities by applying neural networks. ConvE (Dettmers
et al., 2018) implements a convolutional operation on reshaped rep-
resentations of head entities and relations with the help of CNNs for
matching tail entities. ConvKB (Dai Quoc Nguyen et al., 2018) subse-
quently performs a convolutional operation on all elements of a triple
and extracts the complex features of triples jointly. ConvR (Jiang et al.,
2019) takes relation embeddings as convolutional kernels to avoid
over-parameterization in comparison with ConvE. InteractE (Vashishth,
Sanyal, Nitin, Agrawal et al., 2020) generalizes ConvE by focusing on
the feature permutation of the reshaped embeddings of head entities
and relations. In contrast to translational methods and tensor factor-
ization methods, neural network methods can learn more expressive
features due to their deep and multilayer architectures.

Apart from the aforementioned three kinds of methods, GNN-
based methods have attracted wide attention in recent years. R-GCN
(Schlichtkrull et al., 2018) applies traditional GCN into multi-relational
KGs. CompGCN (Vashishth, Sanyal, Nitin and Talukdar, 2020), WGCN
(Shang et al., 2019), and VR-GCN (Ye et al., 2019) make some inno-
vations based on R-GCN. KBGAT (Nathani et al., 2019) and RGHAT
(Zhang, Zhuang et al., 2020) extend GNN methods by introducing
an attention mechanism into representation learning. Following these
works, we concentrate on a GNN-based method to address the KGE task.

3. Dual-attention Embedding Network (D-AEN)

The architecture of our D-AEN model with a single layer is shown
in Fig. 2. Besides original triples, the reversed relations and reversed
triples in KGs are taken into account for knowledge representation
learning. Subsequently, it jointly learns the representations of both
relations and entities by fusing the information of knowledge triples
with proper importance. Before introducing D-AEN, we present the

basic notations of this paper.
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Fig. 2. The architecture of a single D-AEN layer where the representations of both relations and entities are learned jointly.  and 𝑖𝑛𝑣 respectively denote the set of original and
reversed triples. Green and orange circles indicate relation and entity representations in  respectively. Yellow and blue circles indicate relation and entity representations in 𝑖𝑛𝑣
respectively. Circles with both orange and blue colors represent the final entity representations. ∥ indicates concatenation and + indicates summation. Entity representations are
learned separately based on two independent triple sets  and 𝑖𝑛𝑣, then are summed up as final entity representations. Homoplastically, D-AEN also learns the representations of
both original and reversed relations separately and concatenates them as final relation representations.
Table 1
Notations and descriptions.

Notations Descriptions

 Knowledge graphs
 , ,  Entity set, relation set, and triple set
𝑖𝑛𝑣, 𝑖𝑛𝑣 Set of reversed relations and reversed triples
(𝑒𝑖 , 𝑟𝑘 , 𝑒𝑗 ) Triple with head entity, relation, and tail entity
𝑡𝑘𝑖𝑗 Triple (𝑒𝑖 , 𝑟𝑘 , 𝑒𝑗 )
𝑟−1𝑘 Reversed relation of relation 𝑟𝑘
(𝑒𝑗 , 𝑟−1𝑘 , 𝑒𝑖) Reversed triple of triple (𝑒𝑖 , 𝑟𝑘 , 𝑒𝑗 )
ℎ𝑖, 𝑔𝑘 Embedding of entity 𝑒𝑖 and relation 𝑟𝑘
𝑒(𝑖) Set of neighbor entities of 𝑒𝑖 for its outgoing edges
𝑟(𝑘) Set of the related head-tail entity pairs of 𝑟𝑘
𝐚 Attention vector
𝛼 Attention scores of original triples for entities
𝛽 Attention scores of reversed triples for entities
𝛾 Attention scores of triples for relations
𝜑(𝑥) Scoring function
𝑦 Labels of triples
𝑦̂ Prediction scores of triples

3.1. Notations

The main notations of this paper and their corresponding descrip-
tions are listed in Table 1. Some of them need to be explained in
detail. Similar to Vashishth, Sanyal, Nitin and Talukdar (2020), we
learn the representation for a central entity by fusing the information of
neighborhoods with outgoing relations. Simultaneously, the incoming
relations are converted into reversed ones. Specifically, for entity 𝑒𝑖, we
denote 𝑒(𝑖) as the set of neighbor entities of 𝑒𝑖 for its outgoing edges
(i.e., tail entity set of 𝑒𝑖). For the neighbor entities of 𝑒𝑖 for its ingoing
edges, we convert the relations between them into the reversed ones.
Hence, we introduce 𝑖𝑛𝑣 and 𝑖𝑛𝑣 by incorporating reversed relations
into representation learning, i.e.  = {𝑟−1|𝑟 ∈ } and  =
4

𝑖𝑛𝑣 𝑘 𝑘 𝑖𝑛𝑣
{(𝑒𝑗 , 𝑟−1𝑘 , 𝑒𝑖)|(𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) ∈  }. In the end, the relations connecting with
a central entity can be divided into two types: original and reversed
types. Further,  and  can be extended as ′ =  ∪ 𝑖𝑛𝑣 and
 ′ =  ∪ 𝑖𝑛𝑣 respectively. Additionally, we refer to the triples related
to an entity or a relation as their neighborhoods.

3.2. Representation learning of entities and relations

Following Nathani et al. (2019), we learn the representation of
triple 𝑡𝑘𝑖𝑗 = (𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) in  ′ as below:

𝑣𝑖𝑗𝑘 = 𝐖𝟏 ⋅ [ℎ𝑖‖ℎ𝑗‖𝑔𝑘] (1)

where ℎ𝑖, ℎ𝑗 ∈ R𝑑 , and 𝑔𝑘 ∈ R𝑑 represent the initial embeddings of
entities 𝑒𝑖, 𝑒𝑗 , and relation 𝑟𝑘 respectively. ∥ denotes concatenation
operation. 𝐖𝟏 ∈ R𝑑×3𝑑 indicates a linear transformation matrix.

We then learn the importance of each triple 𝑡𝑘𝑖𝑗 as:

𝑏𝑖𝑗𝑘 = LeakeyReLU(𝐚 ⋅ 𝑣𝑖𝑗𝑘) (2)

where 𝐚 ∈ R𝑑 is an attention vector. LeakeyReLU denotes a non-linear
activation function with a negative slope value of 0.2. Next, the relative
attention value of triple 𝑡𝑘𝑖𝑗 is computed by applying 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 over
𝑏𝑖𝑗𝑘. To make the relations and entities interact semantically well, the
representations of triples are used to jointly update the representations
of both relations and entities, as shown in Fig. 2.

3.2.1. Representation learning of entities
We learn entity representations by aggregating the information of its

related triples. Different from previous works, we utilize a bidirectional
attention mechanism that encapsulates the direction information of
relations to measure the importance of neighborhoods.
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Based on the type of relation 𝑟𝑘 in triple 𝑡𝑘𝑖𝑗 , we develop two different
ways to measure its relative attention value for entity 𝑒𝑖 as:

𝛼𝑖𝑗𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖𝑗𝑘) =
𝑒𝑥𝑝(𝑏𝑖𝑗𝑘)

∑

(𝑟𝑟 ,𝑒𝑛)∈𝑒(𝑖)
𝑒𝑥𝑝(𝑏𝑖𝑛𝑟)

,

(𝑟𝑘, 𝑟𝑟 ∈ )

(3)

𝛽𝑖𝑗𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖𝑗𝑘) =
𝑒𝑥𝑝(𝑏𝑖𝑗𝑘)

∑

(𝑟𝑟 ,𝑒𝑛)∈𝑒(𝑖)
𝑒𝑥𝑝(𝑏𝑖𝑛𝑟)

,

(𝑟𝑘, 𝑟𝑟 ∈ 𝑖𝑛𝑣)

(4)

where 𝑒(𝑖) = {(𝑟𝑘, 𝑒𝑗 )|(𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) ∈  ′} represents the set of the neighbor
entities of 𝑒𝑖 for its outgoing edges.

Consequently, the representation of entity 𝑒𝑖 is updated by summing
up the representation of its related triples with corresponding attention
values, in which the triples with most representative neighbor entities
may show more influence on the learned representation of 𝑒𝑖. Along
with the above setting, we aggregate the representations of triples
separately according to the type of relations, defined as follows:

ℎ′𝑖_𝑂 = 𝑓𝑒
⎛

⎜

⎜

⎝

𝐖O
∑

(𝑟𝑘 ,𝑒𝑗 )∈𝑒(𝑖)

𝛼𝑖𝑗𝑘𝑣𝑖𝑗𝑘
⎞

⎟

⎟

⎠

, 𝑟𝑘 ∈  (5)

ℎ′𝑖_𝐼 = 𝑓𝑒
⎛

⎜

⎜

⎝

𝐖I
∑

(𝑟𝑘 ,𝑒𝑗 )∈𝑒(𝑖)

𝛽𝑖𝑗𝑘𝑣𝑖𝑗𝑘
⎞

⎟

⎟

⎠

, 𝑟𝑘 ∈ 𝑖𝑛𝑣 (6)

where ℎ′𝑖_𝑂 and ℎ′𝑖_𝐼 represent the sum of the representations of the
triples with original and reversed relation respectively. 𝑓𝑒 denotes a
non-linear activation function of entities. 𝐖O ∈ R𝑑′×𝑑 and 𝐖I ∈
R𝑑′×𝑑 are the graph convolutional kernels corresponding to the orig-
inal and reversed relations respectively. Additionally, to preserve the
information from 𝑒𝑖 itself, we then incorporate its transformed initial
representation into its final representation as:

ℎ′𝑖 = ℎ′𝑖_𝑂 + ℎ′𝑖_𝐼 +𝐖e ⋅ ℎ𝑖 (7)

where ℎ′𝑖 denotes the learned representation of 𝑒𝑖, and 𝐖e ∈ R𝑑′×𝑑

represents a linear transformation matrix.
To aggregate more information of neighborhoods and stabilize the

training process, we apply a multi-head attention mechanism like
GAT (Veličković et al., 2018) where 𝑀 attention mechanisms learn 𝑀
independent representations. Then we concatenate them to generate
the final representation as:

ℎ′𝑖 =
𝑀
∥

𝑚=1
ℎ′𝑖𝑚 (8)

3.2.2. Representation learning of relations
Owing to the heterogeneous types of relations in KGs, we need to

learn independent representations for them to model their differences,
instead of ignoring their representation learning. Further, since these
relations are in different contexts (neighborhoods), focusing only on
their self-updating may suffer from some semantic loss. To this end, we
encapsulate neighborhood information with proper importance into the
learned relation representations.

Same as the process of learning entity representations, for relation
𝑟𝑘 ∈ ′, we selectively fuse the information of its related triples to
update its representation. First, we calculate the relative attention of
triple 𝑡𝑘𝑖𝑗 for relation 𝑟𝑘.

𝛾𝑖𝑗𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖𝑗𝑘) =
𝑒𝑥𝑝(𝑏𝑖𝑗𝑘)

∑

(𝑒𝑚 ,𝑒𝑛)∈𝑟(𝑘)
𝑒𝑥𝑝(𝑏𝑚𝑛𝑘)

(9)

where 𝑟(𝑘) = {(𝑒𝑖, 𝑒𝑗 )|(𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) ∈  ′} denotes the set of related
head-tail entity pairs of 𝑟𝑘.

Then, the new representation of 𝑟𝑘 is expressed accordingly as:

𝑔′𝑘 = 𝑓𝑟
⎛

⎜

⎜

𝐖R
∑

𝛾𝑖𝑗𝑘𝑣𝑖𝑗𝑘
⎞

⎟

⎟

(10)
5

⎝
(𝑒𝑖 ,𝑒𝑗 )∈𝑟(𝑘) ⎠

e

Algorithm 1: Learning entity and relation embeddings in the
encoder model.

Input: KGs  = ( ,,  );
Number of D-AEN layers 𝐿;
Attention vector of each layer;
Weight matrices of each layer;
Embedding size 𝑑0, 𝑑1, ..., 𝑑𝐿 ;
Number of attention heads 𝑀1, 𝑀2, ..., 𝑀𝐿.

Output: New embeddings of entities, original relations, and reversed
relations.

1 Extend relation set ′ ←  ∪𝑖𝑛𝑣,
𝑖𝑛𝑣 ← {𝑟−1𝑘 |𝑟𝑘 ∈ };

2 Extend triple set  ′ ←  ∪ 𝑖𝑛𝑣, 𝑖𝑛𝑣 ← {(𝑒𝑗 , 𝑟−1𝑘 , 𝑒𝑖)|(𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) ∈  };
3 Initialize embeddings of entities and relations, ℎ0

𝑖 ∈ R𝑑0 ,∀𝑒𝑖 ∈  ;
𝑔0𝑘 ∈ R𝑑0 ,∀𝑟𝑘 ∈ ′;

4 for 𝐿 = 1, 2, ..., 𝐿 do
5 for 𝑚 = 1, 2, ...,𝑀𝑙 do
6 for 𝑡𝑘𝑖𝑗 ∈  ′ do
7 Learn the embeddings of triples by (1);
8 Calculate the importance of triples by (2);

9 for 𝑒𝑖 ∈  do
10 for (𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) ∈  do
11 Calculate the attention value 𝛼𝑙

𝑖𝑗𝑘 by (3);

12 Fuse original neighborhoods for 𝑒𝑖: ℎ𝑙
𝑖𝑚_𝑂 by (5) (𝑟𝑘 ∈ );

13 for (𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) ∈ 𝑖𝑛𝑣 do
14 Calculate the attention value 𝛽𝑙𝑖𝑗𝑘 by (4);

15 Fuse reversed neighborhoods for 𝑒𝑖: ℎ𝑙
𝑖𝑚_𝐼 by (6)

(𝑟𝑘 ∈ 𝑖𝑛𝑣);
16 Update entity embedding ℎ𝑙

𝑖𝑚 by (7);

17 for 𝑟𝑘 ∈ ′ do
18 for (𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) ∈  ′ do
19 Calculate the attention value 𝛾 𝑙𝑖𝑗𝑘 by (9);

20 Update relation embedding 𝑔𝑙𝑘𝑚 by (11) and (10);

21 Concatenate the learned embeddings of entities and relations
from all attention heads: ℎ𝑙

𝑖 ,∀𝑒𝑖 ∈  and 𝑔𝑙𝑘,∀𝑟𝑘 ∈ ′ by (8) and
(12) respectively;

22 return ℎ𝐿
𝑖 ∈ R𝑑𝐿 ,∀𝑒𝑖 ∈  ; 𝑔𝐿𝑘 ∈ R𝑑𝐿 ,∀𝑟𝑘 ∈ ′.

where 𝑓𝑟 denotes a non-linear activation function of relations. 𝐖R ∈
R𝑑′×𝑑 is the relation-specific graph convolutional kernel.

To keep initial relation information in the updated representation,
we add the transformed initial representation of 𝑟𝑘 into its updated
representation.

𝑔′𝑘 = 𝑔′𝑘 +𝐖r ⋅ 𝑔𝑘 (11)

where 𝐖r ∈ R𝑑′×𝑑 is a linear transformation matrix.
Moreover, we incorporate 𝑀 attention heads into the process of

the representation learning of 𝑟𝑘 to encapsulate more neighborhood
information.

𝑔′𝑘 =
𝑀
∥

𝑚=1
𝑔′𝑘𝑚 (12)

. Encoder–decoder architecture

We follow an encoder–decoder framework to address the KGE task.
he encoder contains 𝐿 GCN layers. A scoring function is leveraged by
he decoder to predict the validity of given triples.

.1. Encoder

After the single D-AEN layer introduced above, we develop the

ncoder framework with two D-AEN layers in practice, in which the
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Table 2
Dataset statistics.

Datasets Entities Relations Edges

Train Valid Test Total

FB15k-237 14,541 237 272,115 17,535 20,466 310,116
WN18RR 40,943 11 86,835 3034 3134 93,003
Kinship 104 25 8544 1068 1074 10,686

first layer consists of 𝑀 attention heads for generating 𝑀 differ-
ent output representations of relations and entities and concatenating
them, followed by a non-linear activation. Whereafter, the second layer
adopts a single attention head and a non-linear activation to learn
the final embeddings of relations and entities. Furthermore, we set
𝑓𝑒 = 𝑓𝑟 = 𝐭𝐚𝐧𝐡 for simplicity. Algorithm 1 presents the overall process
of our encoder model.

4.2. Decoder

We choose ConvE (Dettmers et al., 2018) as the decoder to pre-
dict the validity of a given triple. Note that we also try to utilize
other representative models, such as DistMult (Yang et al., 2015) and
TransE (Bordes et al., 2013), but find ConvE performs the best. For
triple 𝑡𝑘𝑖𝑗 , the scoring function of ConvE is formally defined as:

(𝑒𝑖, 𝑟𝑘, 𝑒𝑗 ) = 𝑓 (𝑣𝑒𝑐(𝑓 ([ℎ𝑖; 𝑔𝑘] ∗ 𝑤))𝐖)ℎ𝑗 (13)

where 𝑓 represents the activation function. ℎ𝑖, 𝑔𝑘 ∈ R𝑑1𝑑2 indicate the
D reshaping of ℎ𝑖, 𝑔𝑘 ∈ R𝑑′ in which 𝑑′ = 𝑑1𝑑2. ∗ and 𝑤 denote 2D
onvolutional operation and a set of convolutional kernels respectively.
𝑒𝑐(⋅) is a vectorization operation that converts a tensor into a vector.

is a linear transformation matrix. In practice, ℎ𝑖, 𝑔𝑘, ℎ𝑗 ∈ R𝑑′ are the
utput of the encoder model.

.3. Optimization

We train the encoder–decoder model jointly. Specifically, for triple
𝑘
𝑖𝑗 , we train the model and update corresponding parameters by mini-
izing the Binary Cross Entropy (BCE) loss as:

= − 1
𝑁

𝑁
∑

𝑜=1

(

𝑦𝑡𝑘𝑖𝑜 ⋅ 𝑙𝑜𝑔(𝑦̂𝑡𝑘𝑖𝑜 ) + (1 − 𝑦𝑡𝑘𝑖𝑜 ) ⋅ 𝑙𝑜𝑔(1 − 𝑦̂𝑡𝑘𝑖𝑜 )
)

(14)

where 𝑁 denotes the number of candidates of tail entities. 𝑦𝑡𝑘𝑖𝑜 (1 or 0)
is the label of triple 𝑡𝑘𝑖𝑜, and 𝑦̂𝑡𝑘𝑖𝑜 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜑(𝑒𝑖, 𝑟𝑘, 𝑒𝑜)) corresponds to its
prediction score. What’s more, we use label smoothing (Szegedy, Van-
houcke, Ioffe, Shlens, & Wojna, 2016) and dropout (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014) techniques to lessen
overfitting and improve generalization. Batch normalization (Ioffe &
Szegedy, 2015) is adopted for stabilizing, regularizing, and speeding
the rate of convergence. The Adam optimizer (Kingma & Ba, 2015) is
employed to optimize the loss function.

5. Experiments

We experiment with the link prediction task to evaluate D-AEN
against several baselines. We further investigate the power of our model
on modeling different categories of relations. In addition, the impact of
hyperparameters and model components on prediction performance is
also explored.

5.1. Datasets

WN18RR, FB15k-237, and Kinship are utilized to conduct exper-
iments in the link prediction task. These three benchmark datasets
contain a certain number of relations and entities, and their basic statis-
tics are listed in Table 2. We also present their detailed information
below.
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• FB15k-237 (Dettmers et al., 2018) contains 14 541 entities and
237 relations, which is built by removing reversible relations from
the FB15k dataset (Bordes et al., 2013).

• WN18RR (Dettmers et al., 2018) contains 40 943 entities and 11
relations, which is built by removing reversible relations from the
WN18 dataset (Bordes et al., 2013).

• Kinship (Lin, Socher, & Xiong, 2018) contains 104 entities and 25
relations, which describes the personal relationships of Alyawarra
tribe.

5.2. Baselines

We compare D-AEN with several representative baselines. Their
detailed descriptions are listed below.

• TransE (Bordes et al., 2013): a classic translational method that
devises a scoring function based on the distance to model rela-
tions between heads and tails with a translation operation.

• RotatE (Sun et al., 2018): an advanced extension of TransE. It
treats relations as a rotation from heads to tails, thereby modeling
various relation patterns.

• ModE (Zhang, Cai et al., 2020): an innovative translational model
that preserves the phase and modulus information of relations and
entities by introducing a polar coordinate system.

• DistMult (Yang et al., 2015): a representative tensor factorization
model that calculates the scores of triples by employing a bilinear
scoring function.

• ComplEx (Trouillon et al., 2016): a marked extension of Dist-
Mult which introduces a complex space to model antisymmetric
relations.

• Tucker (Balazevic et al., 2019): a recent tensor factorization
model which adopts Tucker decomposition (Tucker et al., 1964)
to model the binary representations of knowledge triples.

• R-GCN (Schlichtkrull et al., 2018): a generalization of GCN which
uses GCN to model multi-relational data.

• ConvE (Dettmers et al., 2018): the first CNN model that addresses
relations and entities by applying convolutional operation.

• ConvKB (Dai Quoc Nguyen et al., 2018): another CNN model
that can capture global relationships and transitional properties
of triples.

• ConvR (Jiang et al., 2019): an advanced extension of ConvE
that regards relations as convolutional kernels to lessen model
parameters.

• InteractE (Vashishth, Sanyal, Nitin, Agrawal et al., 2020): an
excellent extension of ConvE that captures more numbers of
interactions between relations and entities.

• CompGCN (Vashishth, Sanyal, Nitin and Talukdar, 2020): a re-
cent GCN-based model that performs a compositional operation
between relations and tail entities.

• WGCN (Shang et al., 2019): a novel GCN-based model that intro-
duces a weighted GCN to model the differences of relations.

• KBGAT (Nathani et al., 2019): a powerful GNN-based model ap-
plying graph attention mechanism into capturing the information
of multi-hop neighborhoods.

• KGEL (Zeb et al., 2021): an advanced extension of WGCN that
proposes a dual-weighted GCN framework for respectively aggre-
gating the information of head entities and tail entities.

• HRAN (Li, Liu et al., 2021): a novel GNN-based model that
devises a relation-path-based attention mechanism to measure the
importance of neighbor entities with different relations.

5.3. Evaluation protocol

Following most baseline methods, we use the ranks of triples for
evaluation. Specifically, we perform head evaluation and tail eval-
uation for all correct triples in the testing dataset. Taking the tail
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Table 3
Hyperparameter settings.

Datasets WN18RR FB15k-237 Kinship

Learning rate 1e−4 1e−4 1e−4
Epochs 800 500 500
Batch size 128 128 128
Label smooth 0.1 0.1 0.1

Initial embedding size 200 300 300
GCN embedding size 200 200 200
LeakeyReLU 0.2 0.2 0.2
GCN dropout 0.5 0.6 0.4
Attention heads 1 3 3

Embedding dropout 0.0 0.0 0.0
Hidden dropout 0.0 0.0 0.0
Feature dropout 0.0 0.0 0.0
Kernel size 5 5 5
Number of filters 300 300 300
Negative samples 40 40 40

evaluation of a triple as an example, we first build its correct triples by
replacing its head and tail entities with other entities. The scores of the
correct triple and corrupted triples are then predicted by the proposed
model and sorted in descending order for generating corresponding
ranks. Based on the ranks, we finally evaluate our proposed model
with several rank-based metrics including mean reciprocal rank (MRR),
mean rank (MR), and Hits@N (N = 1,3,10). We expect to achieve higher
MRR and Hits@N, and lower MR. To obtain more reasonable results,
we follow the ‘Filter’ setting in TransE (Bordes et al., 2013), i.e., the
corrupted triples in the training dataset do not involve rankings. Like
the process of tail evaluation, the results of head evaluation can be
obtained in the same way. The final evaluation results are the average
results of head evaluation and tail evaluation.

5.4. Experimental setting

We conduct all experiments by training the encoder and decoder
model jointly, rather than a separate training procedure (Li, Wang
et al., 2021; Nathani et al., 2019; Zhao et al., 2021). The hyperpa-
rameter settings are selected as follows: learning rate [0.001, 0.0005,
0.0001], batch size [64, 128, 256], label smooth [0.1, 0.2, 0.3], initial
embedding size of relations and entities [100, 200, 300, 400], the num-
ber of attention heads [1, 2, 3, 4], kernel size [3, 5, 7], the number of
filters [100, 200, 300]. The dropout includes GCN dropout, embedding
dropout, feature dropout, and hidden dropout sampled from 0.0 to 0.7.
The number of negative samples for each triple are is selected from
[20, 30, 40, 50]. Additionally, the final embedding size of relations and
entities updated by GCN layers is set to 200. Table 3 lists the details
of hyperparameter settings for different datasets. We implement D-AEN
using the software library PyTorch, and all experiments are conducted
over a PC server equipped with an Intel i7 8700K CPU and an NVIDIA
GTX 1080Ti GPU.

5.5. Results and analysis

To demonstrate the effectiveness of D-AEN, we intuitively analyze
the experimental results from two aspects. On the one hand, the overall
performance of D-AEN is evaluated against several baseline models,
shown in Tables 4 and 5. On the other hand, to evaluate the power
of modeling diverse relation types, we compare D-AEN with some
baselines in Hits@10 by relation categories, shown in Tables 6 and 7.

5.5.1. Overall results
The overall results on FB15k-237 and WN188RR are shown in

Table 4. The results on Kinship are shown in Table 5. Results with ♣

and ¶ are reported from Nathani et al. (2019) and Sun et al. (2018)
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respectively. ‘-’ denotes missing values and the rest are extracted from
the original works. We summarize the following observations from
the results. (i) The results indicate that D-AEN achieves profound
performance compared with the baselines except for KBGAT on FB15k-
237 and significantly outperforms all the state-of-the-art baselines on
2 metrics for WN18RR and 5 metrics for Kinship. KBGAT expands
the training dataset by converting the two-hop neighbor entities of all
entities to one-hop, which can encapsulate more neighborhood infor-
mation in learned entity representations. Therefore, KBGAT achieves
the best performance on FB15k-237 because it is a more compli-
cated KG that contains many relations and edges against WN18RR and
Kinship, which makes the entities in FB15k-237 contain more two-
hop neighbor entities. It is worth noting that although the results of
KBGAT on FB15k-237 are better than those of D-AEN, D-AEN outper-
forms KBGAT on 3 metrics for WN18RR and 5 metrics for Kinship.
In consequence, the overall results elucidate the effectiveness of our
proposed D-AEN. (ii) Compared with the decoder model ConvE only,
D-AEN improves dramatically on all metrics for the three benchmark
datasets. For example, D-AEN performs better than ConvE on the MRR
metric with an improvement of 11.3% for FB15k-237. This strongly
confirms the effectiveness of our encoder model, and also indicates
that the neighborhood information aggregated by D-AEN is valuable.
D-AEN also significantly outperforms the recent GCN model CompGCN,
which adopts ConvE as the decoder model like D-AEN. This result
demonstrates the superiority of our encoder model and further verifies
the effectiveness of D-AEN.

5.5.2. Results of hits@10 based on relation categories
In this part, we conduct experiments by relation categories for eval-

uating the power of modeling different types of relations. Intuitively,
the relations in a KG can be generally categorized into 1-to-1 (one
specific head entity and one specific tail entity are connected with
the relation), N-to-1 (many different head entities and one specific tail
entity are connected with the relation), 1-to-N (one specific head entity
and many different tail entities are connected with the relation) and
N-to-N (many different head entities and many different tail entities
are connected with the relation). The statistics show that the FB15k-
237 dataset contains 7.2% 1-to-1, 34.2% N-to-1, 11.0% 1-to-N, and
47.6% N-to-N relations, and the WN18RR dataset contains 18.2% 1-to-
1, 27.3% N-to-1, 36.3% 1-to-N, and 18.2% N-to-N relations. Tables 6
and 7 present the results of Hits@10 based on relation categories
on the two datasets. Because the link prediction task focuses on the
average results of the tail evaluation and head evaluation, we mainly
compare the average scores here. Results with ♠ are taken from Li,
Wang et al. (2021). On FB15k-237, D-AEN significantly outperforms
all the baselines on four categories of relations, which illuminates the
great power of D-AEN for modeling multi-relational KGs. For example,
D-AEN performs better than the decoder ConvE with an improvement
of 21.2% on N-to-1 relations. On WN18RR, D-AEN also achieves the
best results on four metrics. It is worth noting that TransE, ComplEx,
and ConvE achieve the same performance on 1-to-1 relations. And D-
AEN has a slight improvement in N-to-N relations. The reason is that
WN18RR contains only two 1-to-1 relations and two N-to-N relations,
which makes the prediction relatively easy.

5.6. Convergence analysis

Here, we investigate the convergence of D-AEN with metric MRR
on FB15k-237 and WN18RR. As Fig. 3 shows, the results of the head
evaluation and tail evaluation are denoted by green and blue lines
respectively, and red lines indicate their average values. We can ob-
serve that these three values increase rapidly in the first 50 epochs,
then stabilize after approximately 350 epochs and achieve satisfactory
performance on FB15k-237. Homoplastically, these three values rise
rapidly in the first 100 epoch, then gradually increase on WN18RR.
These observations illustrate that our model converges quickly, is not

prone to overfitting, and also is reliable in practical applications.
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Table 4
Link prediction results of D-AEN and several baselines on two benchmark datasets evaluated by MR, MRR, and Hits@N.

Datasets WN18RR FB15k-237

Metrics Hits MR↓ MRR↑ Hits MR↓ MRR↑

@1↑ @3↑ @10↑ @1↑ @3↑ @10↑

TransE ♣ – – 0.501 3384 0.226 – – 0.465 357 0.294
RotatE 0.428 0.492 0.571 3340 0.476 0.241 0.375 0.533 177 0.338
ModE 0.427 0.486 0.564 – 0.472 0.244 0.380 0.534 – 0.341
DistMult ♣ 0.39 0.44 0.49 5110 0.43 0.155 0.263 0.419 254 0.241
ComplEx ♣ 0.41 0.46 0.51 5261 0.44 0.158 0.275 0.428 339 0.247
TuckER 0.443 0.482 0.526 – 0.470 0.266 0.394 0.544 – 0.358
ConvE 0.39 0.43 0.48 5277 0.46 0.239 0.350 0.491 246 0.316
ConvKB – – 0.525 2544 0.248 – – 0.517 257 0.396
ConvR 0.433 0.489 0.537 – 0.475 0.261 0.385 0.528 – 0.350
InteractE 0.430 – 0.528 5202 0.463 0.263 – 0.535 172 0.354
R-GCN – – – – – 0.151 0.264 0.417 – 0.249
WGCN 0.43 0.48 0.54 – 0.47 0.26 0.39 0.54 – 0.35
CompGCN 0.443 0.494 0.546 3533 0.479 0.264 0.390 0.535 197 0.355
KBGAT 0.361 0.483 0.581 1940 0.440 0.460 0.540 0.626 210 0.518
KGEL 0.446 0.467 0.547 – 0.476 0.317 0.462 0.593 – 0.414
HRAN 0.450 0.494 0.542 2113 0.479 0.263 0.390 0.541 156 0.355

D-AEN 0.443 0.500 0.561 2248 0.484 0.337 0.471 0.611 164 0.429
Fig. 3. The convergence of D-AEN with metric MRR on (a) FB15K-237, (b) WN18RR.
The green and blue lines correspond to the results of the head evaluation and tail
evaluation respectively, with the red lines indicating average values.

Fig. 4. The investigation of parameter sensitivity to the initial embedding size on (a)
WN18RR, and (b) Kinship.

Fig. 5. The investigation of parameter sensitivity to (a) Number of attention heads,
and (b) Number of negative samples on the Kinship dataset.
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Table 5
Link prediction results of D-AEN and several baselines on the Kinship dataset evaluated
by MR, MRR, and Hits@N.

Datasets Kinship

Metrics Hits MR↓ MRR↑

@1↑ @3↑ @10↑

TransE ¶ 0.009 0.643 0.841 6.8 0.309
RotatE – – – – –
ModE – – – – –
DistMult ¶ 0.367 0.581 0.867 5.26 0.516
ComplEx ¶ 0.733 0.899 0.971 2.48 0.823
TuckER – – – – –
ConvE 0.73 0.91 0.98 2 0.83
ConvKB ¶ 0.436 0.755 0.953 3.3 0.614
ConvR – – – – –
InteractE – – – – –
R-GCN ¶ 0.03 0.088 0.239 25.92 0.109
WGCN – – – – –
CompGCN – – – – –
KBGAT 0.859 0.941 0.980 1.94 0.904
KGEL 0.764 0.919 0.983 – 0.844
HRAN – – – – –

D-AEN 0.968 0.984 0.990 1.52 0.977

5.7. Parameter sensitivity

5.7.1. Initial embedding size
To explore the impact of the initial embedding size of entities

and relations on the model performance, we experiment with the
embedding size sampled from 100, 200, 300, and 400 on WN18RR and
Kinship. The results with the MRR metric are shown in Fig. 4, which
shows that the best performance is achieved with the initial embedding
size of 200 and 300 on WN18RR and Kinship respectively, while the
other embedding sizes leads to worse performance. The reason is that
the initial entity and relation representations with a smaller initial
embedding size cannot retain enough intrinsic structural information
of KGs. A larger initial embedding size, on the other hand, may make
the learned entity and relation representations nosier and worsen the
generalization ability of the model.

5.7.2. Number of attention heads
We investigate the performance of D-AEN with the number of

attention heads 𝑚 ∈ [1, 2, 3, 4] on Kinship. As shown in Fig. 5(a), the
performance of D-AEN with 3 attention heads has a great improvement
against the one with 1 or 2 attention heads and is also better than the
one with 4 attention heads. The reason is that incorporating a proper
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Table 6
Link prediction results of D-AEN and several baselines by relation categories on the FB15k-237 dataset.

Models (Hits@10)↑ 1-to-1 N-to-1 1-to-N N-to-N

Tail Head Avg Tail Head Avg Tail Head Avg Tail Head Avg

TransE ♠ 0.521 0.537 0.529 0.833 0.070 0.452 0.052 0.573 0.312 0.508 0.347 0.428
DistMult ♠ 0.182 0.193 0.188 0.793 0.031 0.412 0.039 0.514 0.277 0.485 0.320 0.403
ComplEx ♠ 0.411 0.411 0.411 0.818 0.050 0.434 0.050 0.551 0.300 0.533 0.379 0.456
ConvE ♠ 0.258 0.250 0.254 0.865 0.147 0.506 0.132 0.603 0.368 0.581 0.426 0.504

D-AEN 0.563 0.589 0.576 0.872 0.564 0.718 0.211 0.625 0.418 0.640 0.557 0.598
Table 7
Link prediction results of D-AEN and several baselines by relation categories on the WN18RR dataset.

Models (Hits@10)↑ 1-to-1 N-to-1 1-to-N N-to-N

Tail Head Avg Tail Head Avg Tail Head Avg Tail Head Avg

TransE ♠ 0.976 0.976 0.976 0.190 0.022 0.106 0.061 0.276 0.169 0.941 0.942 0.942
DistMult ♠ 0.929 0.952 0.941 0.334 0.047 0.191 0.051 0.269 0.160 0.944 0.948 0.946
ComplEx ♠ 0.976 0.976 0.976 0.309 0.053 0.181 0.086 0.288 0.187 0.950 0.951 0.951
ConvE ♠ 0.976 0.976 0.976 0.303 0.107 0.205 0.190 0.451 0.321 0.948 0.947 0.948

D-AEN 0.976 0.976 0.976 0.387 0.242 0.345 0.229 0.505 0.367 0.952 0.952 0.952
Table 8
Ablation study of D-AEN in the link prediction task on two benchmark datasets with
metrics MRR and Hits@N.

Datasets WN18RR Kinship

Metrics Hits MRR↑ Hits MRR↑

@1↑ @3↑ @10↑ @1↑ @3↑ @10↑

RemoveBR 0.424 0.497 0.554 0.472 0.922 0.967 0.985 0.946
RemoveR 0.434 0.493 0.555 0.476 0.932 0.969 0.988 0.952
RemoveRA 0.439 0.497 0.553 0.479 0.960 0.978 0.988 0.970
D-AEN 0.443 0.500 0.561 0.484 0.968 0.984 0.990 0.977

number of attention heads into D-AEN can encapsulate more neigh-
borhood information to learn both entity and relation representations,
but more attention heads may encapsulate some useless neighborhood
information thereby resulting in worse performance.

5.7.3. Number of negative samples
To investigate the significance of the number of negative samples,

we experiment with the number of negative samples [20, 30, 40, 50] on
inship. Fig. 5(b) presents the results with the MRR metric. The best
erformance is achieved with 40 negative samples. The performance
ecomes worse as the number of negative samples decreases or in-
reases. The main reason is that a smaller number of negative samples
ay not be enough to train the model effectively, and a larger one may

ontain some unhelpful negative samples to train the model.

.8. Ablation study

To test the validity of model components, three variants of D-AEN
re introduced to conduct an ablation study on WN18RR and Kin-
hip as follows: (1) RemoveRA: Remove the relation-specific attention
echanism from D-AEN. In this trial, the neighborhood information is

used with equal importance for representation learning of relations.
2) RemoveR: Remove neighborhood information from RemoveRA in
epresentation learning of relations. In this setting, relation repre-
entations are self-updated via a learnable matrix. (3) RemoveBR:
emove the bidirectional attention mechanism from RemoveR. In this
cenario, we treat neighborhoods as a whole to measure their impor-
ance when learning entity representations without encapsulating the
irection information of relations.

As shown in Table 8, firstly, RemoveR achieves better performance
han RemoveBR on 7 out of 8 metrics, indicating that the bidirectional
echanism has a profound impact on the experimental results. It

llustrates the effectiveness of incorporating the direction information
9

f relations into measuring the importance of neighborhoods. Secondly,
Table 9
Predicted examples on the FB15k-237 dataset.

Head entity and relation Predicted tail entities

(James Madison,
organization_founder)

(1) Democratic Party;
(2) United States Military Academy;
(3) Democratic-Republican Party;
(4) Episcopal Church.

(National Football League,
team)

(1) Los Angeles Chargers;
(2) Carolina Panthers;
(3) New York Jets;
(4) Detroit Lions.

(The X-Files, actor) (1) William B. Davis;
(2) Gillian Anderson;
(3) Cary Elwes;
(4) Robert Patrick.

(marriage,
location_of_ceremony)

(1) Paris;
(2) Sydney;
(3) Las Vegas;
(4) London.

the experimental results manifest that RemoveRA achieves significant
improvements over RemoveR on 6 out of 8 metrics. The reason is
that incorporating neighborhood information into representation learn-
ing of relations can learn more effective relation representations and
further make entities and relations interact well semantically. Finally,
the performance of D-AEN improves dramatically on all metrics com-
pared with RemoveRA, which confirms that aggregating neighborhood
information with different importance benefits representation learn-
ing of relations. These observations illustrate the reasonability of all
components in D-AEN.

5.9. Case study

To intuitively testify the prediction ability of D-AEN, we leverage
the FB15k-237 dataset to conduct a case study. As Table 9 shows,
given some head entities and relations, D-AEN predicts four tail entities
with the highest scores. The bold indicates the true tail entities in the
testing dataset and the underlined represents the correct tails in the
training dataset. The results illuminate that D-AEN successfully predicts
the correct tail entities even if the true tails are not always at the best
rank.

6. Conclusion

This article presents an innovative GCN-based encoder named D-
AEN to tackle the KGE task. D-AEN simultaneously learns the rep-

resentations of relations and entities by aggregating the information
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of neighborhoods where both entity and relation representations are
utilized to boost the representation learning of each other. Specifically,
a bidirectional attention mechanism and a relation-specific attention
mechanism are devised to jointly measure the importance of neigh-
borhoods for selectively aggregating neighborhood information, which
can make elements in KGs like relations and entities interact well
semantically. Extensive experimental results elucidate the superiority
of D-AEN against state-of-the-art models. Moreover, the impact of
hyperparameters and model components on prediction performance is
investigated.
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