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Abstract

Motivation: Discovering the drug–target interactions (DTIs) is a crucial step in drug development such as the identification of
drug side effects and drug repositioning. Since identifying DTIs by web-biological experiments is time-consuming and costly, many
computational-based approaches have been proposed and have become an efficient manner to infer the potential interactions.
Although extensive effort is invested to solve this task, the prediction accuracy still needs to be improved. More especially,
heterogeneous network-based approaches do not fully consider the complex structure and rich semantic information in these
heterogeneous networks. Therefore, it is still a challenge to predict DTIs efficiently. Results: In this study, we develop a novel
method via Multiview heterogeneous information network embedding with Hierarchical Attention mechanisms to discover potential
Drug–Target Interactions (MHADTI). Firstly, MHADTI constructs different similarity networks for drugs and targets by utilizing their
multisource information. Combined with the known DTI network, three drug–target heterogeneous information networks (HINs) with
different views are established. Secondly, MHADTI learns embeddings of drugs and targets from multiview HINs with hierarchical
attention mechanisms, which include the node-level, semantic-level and graph-level attentions. Lastly, MHADTI employs the multilayer
perceptron to predict DTIs with the learned deep feature representations. The hierarchical attention mechanisms could fully consider
the importance of nodes, meta-paths and graphs in learning the feature representations of drugs and targets, which makes their
embeddings more comprehensively. Extensive experimental results demonstrate that MHADTI performs better than other SOTA
prediction models. Moreover, analysis of prediction results for some interested drugs and targets further indicates that MHADTI has
advantages in discovering DTIs. Availability and implementation: https://github.com/pxystudy/MHADTI

Keywords: data fusion, multiview heterogeneous information network embedding, hierarchical attention mechanisms, drug–target
interaction prediction

Introduction

Discovering drug–target interactions (DTIs) is an important
step in the drug discovery pipeline, which could facilitate the
understanding of drug action mechanisms, disease pathology and
drug side effects [1]. Identifying DTIs by traditional biochemical
experiments is extremely costly and time-consuming [2]. For
example, the estimated cost of developing one new drug is
about $1.8 billion, and takes approximately 13 years [3, 4].
Therefore, researchers have sought to employ computational-
based approaches to discover DTIs, which could significantly
reduce the high cost and narrow down the long period for
developing new drugs [5].

Generally speaking, DTIs prediction approaches can be
summarized into three categories, which are ligand-similarity-
based [6], structure-based [7] and hybrid approaches [8]. Ligand-
similarity-based and structure-based methods are two types
of traditional computational prediction models. Specifically,
ligand-similarity-based methods usually need a large number
of known binding ligands for interested targets, while structure-
based methods always require sufficient three-dimensional
structures of target proteins for promoting their predictive power.
However, at present both the known binding ligands and the
three-dimensional structures of proteins are limited, requiring
the performance of these two types of prediction models to be
improved [9].
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Currently, hybrid methods are believed to be another promis-
ing and effective way to predict DTIs. Hybrid methods mainly
include two subcategories: similarity-based and network-based
methods [10]. The assumption for similarity-based models is that
compounds with similar structures may have similar properties [11].
Under this assumption, drugs and targets are always represented
as feature vectors by utilizing their own information (without
network information), and DTI prediction tasks can be formulated
as one binary classification problem. Meanwhile, some effective
similarity-based approaches such as SimBoost [12], DeepDTA [13],
ML-DTI [14], GraphDTA [15], MGraphDTA [16], Mol2Context-vec
[17] and DeepConv-DTI [18] are proposed and show advantages
in the accuracy of DTI predictions. For example, SimBoost pre-
dicted continuous binding affinity values for compounds and
proteins based on their different types of feature vectors [12].
However, features of drugs and targets need to be defined in
advance, which affects their generalization ability to a certain
extent. For bridging the gap between drug and target encoder,
ML-DTI designed mutual learning layers, which were achieved
by multi-head attention and position-aware attention to predict
DTIs [14]. The features of drugs and proteins were learned from
sequence information with one encoder. GraphDTA was a neural
network architecture that models drugs as molecular graphs and
learns the comprehensive representations of drugs and proteins
with GNN-based method models [15]. However, it almost paid all
attention to the representation of drugs and ignores the features
of proteins. DTI-CDF generated multiple similarity-based features
for drugs and the target proteins to improve the prediction per-
formance of DTIs [19]. DTI-CDF only employed the traditional
machine-learning models and neglected the use of advanced
machine-learning methods such as graph neural network (GNN).

Network-based methods usually construct networks of drugs
and targets and employ graph-based technology to learn the
embedding of nodes and then discover their potential links in the
networks. These methods usually follow the ‘guilt-by-association’
assumption that drugs tend to bind to similar targets, and vice versa
[20]. Early network-based methods only take the DTI information
to build the bipartite network and then predict DTIs [21, 22]. For
example, Bleakley firstly proposed a supervised inference method
to predict DTIs based on the bipartite local model [21]. However,
these approaches only take the interactions between drugs and
targets into consideration. Afterward, establishing heterogeneous
networks which incorporate multiple information related with
drugs and targets has gained much attention [23–25]. For instance,
NRWRH established one integrated heterogeneous network by
applying prior information of drugs and targets and then imple-
mented the random walk with restart algorithm on the hetero-
geneous network to predict DTIs [26]. DTINet applied an unsuper-
vised method to learn low-dimensional feature representations of
drugs and target proteins from heterogeneous data and predicted
DTI using inductive matrix completion [27]. NeoDTI constructed
a heterogeneous network based on eight individual networks of
drugs and targets and then learned their topology-preserving
representations to predict DTIs [28]. However, for these methods,
establishing the heterogeneous networks with the multisource
information of drugs and targets in depth is a challenging task.
Besides, these approaches mainly learn the feature representa-
tions for nodes in the network and it is difficult for them to achieve
target prediction for drugs outside the heterogeneous network.
More recently, biological knowledge graph (KG) based methods are
also proposed to deal with DTI prediction [29, 30]. For instance,
TriModel first utilized biomedical knowledge datasets to create a
knowledge graph of entities connected to both drugs and targets

and learned their comprehensive embedding representations [31].
Ye et al. [32] developed a unified framework called KGE_NFM for
DTIs prediction, which could obtain the low-dimensional rep-
resentations for various entities in the graphs. However, it is
still a crucial and challenging task to establish the biomedical
knowledge graphs systematically with the multi-omics data of
biological entities.

Meanwhile, graph attention networks (GATs) [33] show great
potential in modeling complex graph data, which has gained
considerable interest in different research areas such as graph
classifications [34] and recommender systems [35]. More impor-
tantly, GATs have been successfully utilized in some link predic-
tion tasks in bioinformatics areas [36]. For instance, Long [37] put
forward the hierarchical attention mechanism for microbe–drug
interaction. Wang [38] proposed a heterogeneous graph attention
network (HAN) model to learn node deep embedding from both
node-level and semantic-level attentions. More recently, MLA-
GNN first constructed multi-level graphs and then employs the
attention mechanism on each graph to learn the comprehensive
features of nodes [39]. Therefore, GAT has fully demonstrated its
effective ability in fusing graph topological structure and learning
node embeddings [40]. However, most of these approaches only
apply the GAT on the node level and fewer studies pay much
attention to the hierarchical attention mechanism on the graph
level.

Multiview-based feature learning models have become another
mainstream manner in dealing with the DTI prediction problem
[41]. These approaches usually employ multitype information of
drugs and targets such as chemical structures, fingerprints, side-
effects to construct their similarity networks and then establish
multi-view networks. Then embeddings of drugs and targets could
be obtained based on these multiview similarity networks through
various feature learning approaches [42, 43]. For example, MVGCN
constructed multi-heterogeneous networks with the similarity
networks of drugs and targets and learned their embeddings
by aggregating the representations from inter-domain and intra-
domain neighbors in multiview networks [44]. Afterward, Yuan
[45] put forward a knowledge-enhanced multiview framework
model which learned the comprehensive representations of nodes
via multi-view attention mechanism and predicted DTIs on a large
scale. Wei [46] proposed a multiview-based deep learning model
called MDL-CPI which extracted the features of proteins and
compounds and then obtained their interactive information for
compound-protein interaction prediction. However, most of these
approaches only take the homogeneous networks or biological
features of entities themselves as multiview inputs.

Multiview HINs related to drugs and targets usually contain
complex structural information and rich semantic information.
How to fully capture the structural and semantic information
in HINs for learnings embeddings of drugs and targets simulta-
neously is a challenging task [47]. Since meta-paths could cap-
ture complex relationships that effectively reveal structural and
semantic information in HINs, various meta-paths will imply
different semantic meanings well. Meanwhile, meta-path-based
neighbors have different importance to the representations of
drugs and targets. Therefore, learning their embeddings with hier-
archical attention mechanisms has become an effective strategy.

In this study, we construct the multiview heterogeneous infor-
mation networks (HINs) and expand the hierarchical attention
mechanisms with three level attentions. A novel method is pro-
posed employing Multiview heterogeneous information networks
with Hierarchical Attention mechanisms to predict Drug-Target
Interactions (MHADTI). An overview of MHADTI is shown in
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Figure 1 and MHADTI mainly contains four steps. Firstly, multiple
types of data for drugs and targets are collected from different
datasets. Then we build different similarity networks for drugs
and targets and construct multiview HINs. After that, MHADTI
learns the deep embedding representations based on HINs with
hierarchical attention mechanisms, which include the node-level,
semantic-level and graph-level attentions, respectively. Lastly, we
concentrate representations of drugs and targets and feed them
into the multilayer perceptron (MLP) to predict DTIs. Our contri-
butions can be summarized as follows:

(1) We establish multiview HINs of drugs and targets with their
multisource information.

(2) MHADTI could capture the complex structure and rich
semantic information in HINs with the hierarchical attention
mechanisms.

(3) MHADTI could fully consider the importance of nodes, meta-
paths and graphs with the hierarchical attention mecha-
nisms which include node-level, semantic-level and graph-
level attentions, respectively.

(4) Experimental results demonstrate that MHADTI is superior
to other SOTA approaches in DTI prediction.

Materials and methods
In this section, we will first describe the datasets used in MHADTI.
Then, multitype similarity networks of drugs or targets are cal-
culated based on various similarity measurement models and
multiview HINs are constructed based on these similarity net-
works combined with the DTI network. After that, learning the
embeddings of drugs and targets based on multiview HINs with
hierarchical attention mechanisms is well described. In the end,
some implementation details are introduced.

Data collection
In this study, various types of information about drugs and tar-
gets are collected for MHADTI. Specifically, DTI data are mainly
downloaded from the DrugBank database(v5.1) [48]. To measure
the similarity between drugs and targets comprehensively, we
also obtained their other types of information. Specifically, we
adopted SMILES (Simplified Molecular Input Line Entry System)
and side effect information of drugs, which are collected from
PubChem [49] and Uniprot database [50], respectively. Meanwhile,
functional annotation, protein domain and sequence information
of targets are also downloaded from the Uniprot database [50].
A brief statistics about drugs and targets annotation information
used is shown in Table 1. Here, we only select drugs and targets
that all the annotation information is known. Consequently, a
total of 15 252 DTIs involving 4358 drugs (compounds) and 2407
targets (proteins) are employed for establishing their HINs.

The construction of multiview HINs
In this subsection, we will first describe the different similarity
calculation models for drugs and targets (see Appendix A section)
and then establish the multiview HIN.

Construction of Multiview HINs

Here, we can calculate similarities between all drug pairs with
their side effect, fingerprint and Gaussian interaction profile
kernel information. Meanwhile, the similarities of all target
pairs can be evaluated by their functional annotation, protein
domain and protein sequence information. Therefore, three
different similarity networks for drugs and targets can be

Table 1. A brief statistics about drugs and targets information.

Data types Number

Drugs Side effects 747
SMILES 4358
DTIs 15 252

Targets Protein Sequence 2407
Protein Domain 2348
BP 29 380
CC 11 113
MF 4181

Table 2. Main notations used in this study.

Notations Descriptions

� Meta-path
h Initial node feature
h′ Projected node feature
Mφ Type-specific transformation matrix
q Semantic-level attention vector
c Graph-level attention vector
e(�,G)

vivj
Importance of node vj to vi under � in graph G

α
(�,G)
vivj

Weight of node vj to vi under � in graph G
N (�,G) Meta-path based neighbors for � in graph G
w(�,G) Importance of meta-path � in graph G
β(�,G) Weight of meta-path � in graph G
γG Weight of graph G
Z(�,G) Node-level embedding under � in graph G
ZG Semantic-level node embedding in graph G
Z The final node embedding
(i, j) The node pair of drug di and target tj

yij The ground truth of drug di and target tj

ŷij The prediction interaction score of drug di and
target tj

Y+ The positive samples in the training set
Y− The negative samples in the training set
IC The information content
BP Biological process
MF Molecular function
CC Cell component

established. The side-effect-similarity network, fingerprint-based
similarity network and Gaussian-interaction-profile-kernel-
based similarity network of drugs are denoted as Netsideeffect,
Netfingerprint and NetGIP. The annotation-based semantic similarity
network, the domain-based similarity network and the sequence-
based similarity network of targets are denoted as Netintegrated,
Netdomain and Netsequence, respectively. Combined with the known
DTI network, three multiview HINs are constructed which are
shown in Figure 1B.

Specifically, the three HINs in MHADTI model (Step 2 in
Figure 1B) are represented as G1, G2 and G3, respectively. G1

is established based on annotation-based semantic similarity
network of targets Netintegrated, side-effect-similarity network
of drugs Netsideeffect and the known DTI network, while G2 is
constructed by domain-based similarity network of targets
Netdomain, fingerprint-based similarity network of drugs Netfingerprint

and the known DTI network. Besides, G3 is built with sequence-
based similarity network of targets Netsequence, the Gaussian-
interaction-profile-kernel-based similarity network of drugs
NetGIP and the known DTI network.
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Figure 1. An overview of MHADTI for DTI prediction. MHADTI mainly contains four steps. (A) In the first step, we collect multisource information
of drugs and targets from different datasets. (B) In the second step, various similarity calculation models are employed to measure the similarity for
drugs and targets from different views and then MHADTI constructs the multiview heterogeneous information networks. (C) In the third step, MHADTI
learns the embeddings of drugs and targets with the hierarchical attention mechanisms, which include the node-level, semantic-level and graph-level
attentions. (D) We employ the multilayer perceptron to predict the potential DTIs based on the learned embeddings of drugs and targets in the third
step. In the figure, Netintegrated, Netdomain and Netsequence denote the integrated semantic similarity network, domain-based similarity network and the
sequence-based similarity network of targets, while Netsideeffect, Netfingerprint and NetGIP denote the side-effect-based similarity network, fingerprint-based
similarity network and Gaussian-interaction-profile-kernel-based similarity network of drugs, respectively. NetDTI represents the drug–target interaction
network. NLA, SLA and GLA are the representations of node-level attention, semantic-level attention and graph-level attention. Z(�,G),ZG and Z denote
the embedding representations at node-level, semantic-level and graph-level, respectively.

MHADTI model
In this subsection, we first define the basic concepts related to
MHADTI model. Then learning embeddings of drugs and targets
via hierarchical attention mechanisms is displayed in Figure 1C.
After that, the decoder model and loss function are introduced. In
the end, we will perform a description about the implementation
details for MHADTI.

Related concepts

DTI prediction problem formulation.
Given a set of M drugs D = (d1, d2, · · · , dM) and a set of N targets

T = (t1, t2, · · · , tN), and one drug–target pair di ∈ D and tj ∈ T whose
interaction information is unknown, the goal for MHADTI is to
predict the interaction relationship I(di, tj) according to their final
embeddings, which can be denoted as

I(di, tj) =
{

1, interaction
0, no interaction

(1)

Definition 1. Heterogeneous Information Network (HIN).
The HIN (Graph) is one type of information network, which can

be formulated as G = (V ,E ,A,R, φ, ψ), where V denotes the node
set and E represents the edge set. The node type mapping function
and the edge mapping function are defined as φ : V → A and ψ :
E → R. The A and R are node types and link types, respectively,
and |A| + |R| > 2.
Example. In the drug–target HIN (Figure 2B), there are two types of
nodes which are drug and target, and two types of links which are
node similarity and DTI. There are different relationships between
nodes, i.e. DTI and drug–drug similarity.
Definition 2. Meta-paths.

A meta-path � can be described as the form of A1
R1−→

A2
R2−→ · · · Rl−→ Al+1, which is abbreviated as A1A2 · · · Al+1. The

composition relation between node A1 and Al+1 is formulated as
R = R1 ◦ R2 ◦ · · · ◦ Rl, where ◦ denotes the composition operator on
relations.
Example. In the drug–target HIN (Figure 2B), two drugs can be
connected by different meta-paths (Figure 2C), such as Drug–
Target–Drug (DTD) and Drug–Target–Target–Drug (DTTD). These
meta-paths usually have different semantic meanings. For
instance, DTD indicates that if two drugs interact with one
common target, they will have a higher similarity. TDT indicates
that if two targets interact with one common drug, they will also
have a higher similarity.
Definition 3. Meta-path-based neighbors.

Suppose there is one node named vi and one meta-path � in
the HINs, the meta-path-based neighbors N�

vi
for node vi can be

defined as the nodes that connect with vi based on the meta-path
�. Note that N�

vi
is the set of nodes, which contains node vi.

Example. As is shown in Figure 2D, for drug D1, its DTD meta-
path-based neighbors are D1, D4 and D5. These meta-path-based
neighbors have different importance to the embedding learning
of drugs D1.
Definition 4. Heterogeneous Information Network Embedding.

Suppose there is one HIN named G = (V ,E ,A,R, φ, ψ) and
one node named vi, the HIN embedding model is to learn a d-
dimension representation from the original feature space via a
mapping function f : V → N

d, where vi ∈ V and d � |V|.
Example. In the MHADTI model, we employ the hierarchical
attention mechanisms to learn the embedding representation of
drugs and targets from their original feature space to the low-
dimensional representation space.

Node-level attention

Node-level attention could effectively learn the importance
of the neighbors for drugs and targets in HINs. And different
meta-path-based neighbors of drugs and targets have diverse
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Figure 2. A toy example for MHADTI. (A) Two node types which are drug and target, (B) A heterogeneous information network contains two types of
nodes: drug and target, and two types of links: similarity (green color) and interaction (red color), (C) Four meta-paths involved in MHADTI, which are
DTD, DTTD, TDT and TDDT, (D) Drug D1 and its DTD meta-path-based neighbors D1, D4 and D5 based on the HIN (Figure 2B).

specific semantic meaning which is significant in learning their
embeddings comprehensively. Therefore, the embeddings of drugs
and targets can be generated by aggregating information from
their meta-path-based neighbors with the node-level attention.

Since drugs and targets are two different types of nodes in
HINs and they have different feature spaces, it is essential to
transform their features into one same feature space firstly. The
type-specific transformation matrix can be represented as Mφ and
the projection process can be defined as

h′
vi

= Mφvi
· hvi , φvi ∈ {drugs, targets}, (2)

where Mφvi
denotes the transformation matrix for drugs or targets,

and hvi and h′
vi

are the original and projection features for node
vi respectively. With this type-specific projection operation, drugs
and targets with different features dimension can be transformed
into one same space.

Next, we employ the self-attention mechanism to learn the
weights for drugs and targets in HINs. Suppose there is one node-
pair named (vi, vj), which is connected via the meta-path � in
graph G, the node-level attention e(�,G)

vivj
indicates the importance

of node vj to node vi. The importance of meta-path-based node
pair (vi, vj) can be formulated as follows:

e(�,G)
vivj

= attnode(h
′
vi

, h′
vj

; �,G), (3)

where attnode represents the deep neural network which achieves
the node-level attention. It could share all meta-path-based node
pairs under the meta-path � in graph G.

After that, we calculate e(�,G)
vivj

for nodes vj ∈ N (�,G)
vi

, whereN (�,G)
vi

denotes the meta-path-based neighbors based on � in graph G for
node vi including itself. Specifically, we normalize importance and
get the weight coefficient α

(�,G)
vivj

via softmax function:

α(�,G)
vivj

= softmax
(
e(�,G)

vivj

)
=

exp
(
σ(aT

(�,G) · [h′
vi
‖h′

vj
])

)
∑

vk∈N (�,G)
vi

exp
(
σ(aT

(�,G) · [h′
vi
‖h′

vk
])

) , (4)

where σ denotes the activation function, || represents the concate-
nate operation and aT

(�,G) is the node level attention vector under
meta-path � in graph G. Please note that the weight coefficient is
asymmetric, which means the importance of node vi to vj is not
equal to the importance of vj to vi.

Then, the node-level embedding for vi can be aggregated by
its neighbors’ projected features based on their corresponding
coefficients weight defined as

z(�,G)
vi

= σ

⎛
⎜⎝ ∑

vj∈N (�,G)

α(�,G)
vivj

· h′
vj

⎞
⎟⎠ , (5)

where z(�,G)
vi

is the learned embedding of node vi under the meta-
path � in graph G and σ represents the activate function. Since
the attention weight α

(�,G)
vivj

is generated from a single meta-path,
it has specific semantic meaning and is able to fully capture this
kind of semantic information.

To make the training process more stable, we combine the
node-level attention with the multihead attention together. The
ultimate embedding for node vi at the node-level attention is
formulated as

z(�,G)
vi

= L‖
l=1

σ

⎛
⎜⎝ ∑

vj∈N (�,G)

α(�,G)
vivj

· h′
vj

⎞
⎟⎠ , (6)

where || represents concatenation, L is the number of attention
head and l is a variable ranging from 1 to L. In this study, MHADTI
could learn the node-level embeddings of drugs and targets with
the node-level attention, which aggregates their meta-path-based
neighbors information. Given a set of meta-paths denoted as
{�1, . . . , �P} in graph G, after injecting features of all nodes into
node-level attention, we can obtain P group of semantic-specific
node embeddings, represented as {Z(�1,G), · · · , Z(�p ,G)}.

Semantic-level attention

Generally speaking, drugs and targets in HINs may belong to mul-
tiple meta-paths and each meta-path has its specific semantic
meaning. Further, one meta-path usually reflects only one aspect
of semantic meaning of drugs and targets. Therefore, to obtain
their more informative embeddings, we need to aggregate vari-
ous semantics of different meta-paths. Here, four representative
meta-paths for drugs and targets are selected, which are shown
in Figure 2C.

To learn the importance of each meta-path automatically and
fuse the different semantics of meta-paths of drugs and targets,
we leverage the semantic-level attention into MHADTI. Here, still
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taking the meta-path set {Z(�1,G), · · · , Z(�p ,G)} as an example, these
P groups of node-level embeddings are employed to learn the
weight of each meta-path, which can be denoted as follows:

(
β(�1,G), · · · , β(�P ,G)

) = attsem

(
Z(�1,G), · · · , Z(�p ,G)

)
, (7)

where attsem is the deep neural network that performs the
semantic-level attention.

Further, to learn the importance of each meta-path, we
firstly transform node-level embeddings through a nonlinear
transformation. Then, we evaluate the importance of the node-
level embedding as the product between transformed embeddings
and a semantic-level attention vector q. In this way, we could
average the importance of all semantic-specific node-level
representations, which can be regarded as the importance of each
meta-path. The importance of each meta-path is defined as

w(�p ,G) = 1
|V|

∑
vi∈V

qT · tanh(W · z(�p ,G)
vi

+ b), (8)

where W is the weight matrix, b and q are the bias vector and
semantic-level attention vector, respectively. Similarly, we operate
the semantic-level importance and leverage the softmax function
to normalize the weight coefficient of meta-path �p, which can be
expressed as follows

β(�p ,G) = exp
(
w(�p ,G)

)
∑P

j=1 exp
(
w(�j ,G)

) , (9)

where β(�p ,G) denotes the normalized weight for meta-path �p in
graph G. Finally, we can fuse the semantic-level embeddings to
obtain the integrated embedding via the learned weight coeffi-
cients. It is calculated as follows

ZG =
P∑

p=1

β(�p ,G) · Z(�p ,G) (10)

In this way, the embedding representations for drugs and targets
will be more comprehensive. Given multiview HINs {G1, . . . ,GK},
we can obtain K groups of semantic-level embeddings, which can
be formulated as {ZG1 , · · · , ZGK }, where ZGk denotes the semantic-
level node embeddings in graph Gk.

Graph-level attention

When there are multiple attributes of drugs and targets such as
drug fingerprints and protein annotations, we can adopt differ-
ent attributes to construct their multiview HINs. Since various
features of drugs and targets have different importance on their
embedding learning, it is a great challenge to assign weights
reasonably to their features which are learned from various het-
erogeneous graphs.

In this research, we construct the multiview HINs and propose
a novel graph-level attention mechanism, which could automat-
ically learn the importance of embeddings of drugs and targets
from their different HINs. The weights for HINs can be formulated
as

(γG1 , γG2 , · · · , γGK ) = attgraph(ZG1 , ZG2 , · · · , ZGK ), (11)

where attgraph is the deep neural network that performs the graph-
level attention and γ k is the weight coefficient for graph Gk.

To learn the importance of graph G, we first define a graph-
level attention vector named c. Then, we evaluate the weight
coefficient in the k-th heterogeneous graph based on SoftMax
activation function, which can be expressed as

γGk = exp(c · ZGk )∑K
j=1 exp(c · ZGj )

, (12)

where γGk is the weight coefficient of Gk after being normal-
ized. Obviously, the bigger the weight is, the more important the
attribute is.

Finally, the learned weight coefficients are employed to fuse
the node embeddings from different HINs and we can obtain the
final embedding Z, which can be defined as

Z =
K∑

k=1

(γGk · ZGk ). (13)

In brief, graph-level attention is actually to assign distinct
weight coefficients to the same nodes, for the sake of evaluating
the importance of embedding in each HIN reasonably. The whole
process of hierarchical attention mechanisms is displayed in
Figure 1C.

An example of learning the embedding representation for
one node with MHADTI is shown in Figure 3. The hierarchical
attention mechanism consists of three parts, which are node-level
attention, semantic-level attention and graph-level attention.
MHADTI learns the feature representations of nodes with the
hierarchical attention mechanisms which mainly contain three
steps. In the first step, MHADTI learns the features of nodes
with their meta-path-based neighbors based on GATs and gets
their node-level embeddings. In the second step, MHADTI first
measures the coefficient weights of features of nodes that
come from the node-level and then obtains the semantic-level
embeddings of nodes with the semantic-level attention. In the
third step, MHADTI learns the coefficient weights of features of
nodes that come from the semantic-level and gets the graph-
level embeddings of nodes with graph-level attention. The output
of MHADTI at the node-level is the input of the MHADTI at the
semantic level, and the output of MHADTI at the semantic-level
is the input of the MHADTI at the graph-level.

Final decoder
In this study, we first feed the learned drug–target embedding
representations into MLP and then perform the element-wise
multiplication on the embeddings of drugs and targets. Finally, the
interaction probability scores ŷij for the input drug di and target tj

can be evaluated.

ŷij = σ(WT(zdi
� ztj )), (14)

where zdi
and ztj denote the final embedding for drug di and target

tj. The operation � denotes the element-wise multiplication for
drug zdi

∈ RF′ and target ztj ∈ RF′ and WT is the transpose of matrix
W ∈ RF′×1. Besides, σ denotes the activation functions including
ReLU and Sigmoid.

Loss function
In this study, we adopt the binary cross-entropy as the loss func-
tion to train MHADTI. The objection is to minimize loss L, which
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Figure 3. A toy example for learning the embedding of node D1 with MHADTI. (A) Two HINs of D1, which are constructed from different views. �1 and �2

denote two meta-paths, which are DTD and DTTD. (B) Embedding learning of D1 at node-level attention. (C) Embedding learning of D1 at semantic-level
attention. (D) Embedding learning of D1 at graph-level attention. Figure 3B denotes the neighbors of D1 are generated under (�1,G1), (�2,G1), (�1,G2)

and (�2,G2), respectively. Besides, α
(�,G)

ij represents the weight of Dj to Di under � in graph G. β(�,G) denotes the weight of � in graph G. γG
D1

denotes the

weight of D1 in graph G. z(�,G)
D1

,zG
D1

and zD1 denote the embeddings D1 at node-level, semantic-level and graph-level, respectively. Some toys for learning
the embeddings of some drugs and targets with different level attentions are displayed in Appendix B.

can be defined as

L = −
∑

(i,j)∈Y+∪Y−
yij log ŷij + (1 − yij)log(1 − ŷij), (15)

where (i, j) denotes the drug–target pair for drug di and target tj,
Y+ and Y− represent the positive and negative drug–target pairs
in the training set, respectively. If the drug–target pair (i, j) ∈ Y+,
the ground truth yij is 1. If (i, j) ∈ Y−, the ground truth is 0. The
prediction probability interaction score for drug di and target tj is
represented as ŷij.

Complexity analysis of MHADTI
Given a HIN G, MHADTI chooses one of the representative meta-
paths named � for establishing the meta-path-based matrix MG,�.
For one GAT attention head, its input feature dimension and
out feature dimension are F and F′, respectively, and its time
complexity is O(|V| EF′ + |E| F′), where |V| and |E| are the number
of nodes in matrix MG,� [38]. The number of attention heads
in MHADTI is L, the time complexity will be O(|V| EF′L + |E| F′L).
Further, there are total K HINs and P meta-paths in MHADTI, the
ultimate time complexity of Algorithm 1 is O(KP |V| EF′L+KP |E| F′L).

In this study, there are three different HINs and four selected
meta-paths. The number of the multi-heads L is 8. Therefore,
the overall complexity is O(|V| EF′ + |E| F′), which is linear to the
number of nodes and edges in MG,�. The proposed model can
be easily parallelized, because the node-level, semantic-level and
graph-level attention can be parallelized. As a result, we can
effectively achieve MHADTI.

Implementation details
To train MHADTI, we first assign a binary class label 0 or 1 to
each drug–target pair in the training set. Specifically, drug–target
pairs with known interactions will be labeled with 1, while the rest
drug–target pairs in the training set are labeled with 0. The output
for MHADTI is the interaction probability scores for drug–target
pairs in the testing set.

In the construction process of multiview HINs (Figure 1B), there
are 4358 drugs and 2407 targets in the DTI network. For measuring
the fingerprint-based drug similarity, the fingerprint dimension
for each drug is 167. For calculating the sequence-based target
similarity, we set λ = 1 and each target is represented as one
40-dimensional vector. To fuse the three semantic similarity net-
works of targets, we adopt SNF method and the iteration number
is six when SNF converges. In addition, different similarity thresh-
olds are screened for the similarity networks of drugs and targets,
respectively. The sparseness of these similarity networks ranges
from 0.2% to 6%, which is consistent with the characteristics of
biological networks [51].

In the embedding learning process of drugs and targets
with hierarchical attention mechanisms (Figure 1C), MHADTI
effectively implements multiple levels of attention components
based on the PyTorch framework. On the whole, MHADTI contains
two steps: one is the feature initialization step and the other is
the hierarchical attention mechanism-based embedding learning
step. The feature initialization step consists of two MLP layers,
which are employed to encode the initial features of drugs
and targets, respectively. The dropout value is 0.3. The initial
dimensions for drugs and target are 881 and 40 and their
output dimensions are both 128. In the hierarchical attention
mechanism-based embedding learning step, the input dimension
for node-level attention module is 128, the multi-head is set to
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8 and the dropout value is also 0.3. The semantic-level attention
vector q is set to 128, while the graph-level attention vector c is
set to torch.tensor (128, 1).

The final decoder (Fig. 1D) contains three MLP layers. The input
dimension is 128. The dropout value is 0.5. The final output of
MHADTI is a scalar which indicates the prediction interaction
probability score.

Besides, the parameters are initialized and optimized with
Adam [52]. The learning rate is 0.005 and the regularization
parameter is 0.0005. Furthermore, we adopt an early stop with a
patience of 100. That is, MHADTI will stop training if the validation
loss does not decrease in 100 consecutive epochs anymore. When
compared with SOTA approaches, all methods are evaluated on
the same training and test sets.

Results
In this section, we first give an introduction about the evaluation
metrics used in this study. Then a comprehensive comparison
with other competitive methods is displayed. After that, abla-
tion experiments and parameters analysis experiments about
MHADTI are invested. Lastly, we analyze the prediction results for
some interested drugs and targets.

Experimental setup and evaluation metrics
In this study, we adopt the 5-fold-cross-validation (5-CV) strat-
egy to evaluate the performance of MHADTI, which is similar
to other approaches[53, 54]. Specifically, all the positive drug–
target pairs are treated as the known positive samples and all the
remained drug–target pairs are regarded as the negative samples.
We randomly select the same number of negative samples as the
positive samples. The positive and negative samples are together
constructed as the experimental set.

In the 5-CV experiment, we divided the experimental set into
five subsets with the same number. Each subset in turn is uti-
lized as the testing subset, while the remaining four subsets
are regarded as the training sample sets. The true positive (TP),
false positive (FP), true negative (TN) as well as the false neg-
ative (FN) can be calculated, respectively. To reduce the data
bias in the cross-validation experiments, we conduct five times
on each prediction model to be evaluated and calculated their
average values. All the comparison methods are performed with
the 5-fold-cross-validation (5-CV), which is same to MHADTI. The
detailed execution process of 5-CV strategy is shown in Figure 9
in Appendix C.

We mainly employ five widely used metrics, which are
Accuracy (ACC), Area Under the Precision-Recall Curve (AUPRC),
Area Under the Receiver Operating characteristic Curve (AUROC),
Matthews Correlation Coefficient (MCC) and F1 score to evaluate
the performance of the comparison methods as well as MHADTI.
For a detailed introduction of these five metrics one can refer to
reference [4] and here we do not repeat them anymore.

Comparison with other baseline methods
In this study, we select 12 state-of-the-art approaches and
compare them with MHADTI model. These 12 approaches contain
two molecular-feature-based methods: RF (Random Forests)
[55], SVM(Support-vector machine) [56] ; two knowledge-graph-
based models: TriModel [31], KGE_NFM [32] and eight GNN-
based approaches: GCN [57], GAT [33], DTIGAT [58], DTICNN [59],
DTIMGNN [23], EEGDTI [10], MK-TCMF [54] and SGCL-DTI [60].

To comprehensively evaluate the performance of MHADTI, we
compare MHADTI with 12 baseline methods on our DrugBank
dataset as well as other four commonly used datasets. These four
datasets are Luo’s dataset [27], Zheng’s dataset [61], Yamanishi’s
dataset [62]and An’s dataset [53]. The results of MHADTI and all
the baseline approaches are presented in Tables 3–5, respectively.

• RF [55] is one of the ensemble learning methods for classifi-
cation and its output is the class selected by most trees. We
feed the features of drugs and targets for DTI predictions

• SVM [56] is a traditional supervised learning method. We feed
the features of drugs and targets, respectively, into it directly
for DTI predictions.

• TriModel [31] learns the embedding of drugs and proteins
from the specific knowledge graph for DTI predictions.

• KGE_NFM [32] first obtains the low-dimensional representa-
tion for drugs and targets and then integrates other informa-
tion via a neural factorization machine for DTI predictions.

• GCN [57] is a typical semi-supervised graph convolutional
network. We feed the DTI network into GCNs and obtain the
embeddings for drugs and targets to predict their interac-
tions.

• GAT [33] is a semi-supervised neural network with the atten-
tion mechanism. We feed the DTI network into GATs and
obtain the features of drugs and targets to complete the
prediction task.
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• DTIGAT [58] is the deep neural network method with the
attention mechanisms, which could employ the interaction
pattern and drug and target information.

• DTICNN [59] is a deep neural network-based method and it
obtains essential features from the heterogeneous network
to predict DTIs.

• DTIMGNN [23] constructs the topology graph and feature
graph based on the drug–protein pair similarity and then
predicts the DTIs via the multi-channel graph convolutional
network with the graph attention mechanism.

• EEGDTI [10] is an end-to-end learning-based framework
which could learn the comprehensive feature representa-
tions of drugs and targets based on graph convolutional
networks.

• MK-TCMF [54] decomposes the original adjacency matrix
into three matrices and then integrates the multiple kernel
matrices to predict DTIs.

• SGCL-DTI [60] is a co-contrastive learning model which gen-
erates two different views and employs a contrastive loss to
train the model for DTI predictions.

The results on our DrugBank dataset can be seen in Table 3;
MHADTI achieves the best performance on all evaluation met-
rics. The results on ACC, AUC, AUPRC, MCC and F1 are 0.8801,
0.9522, 0.9352, 0.7631 and 0.8775, respectively. The AUC shows
that MHADTI is effective in predicting a high number of positive
samples and the value of AUPRC proves that MHADTI predicts a
high percentage of correct DTIs. Besides, SGCL-DTI ranks second
on ACC and AUC metrics, which are 0.8767 and 0.9356, while
DTIGAT wins the second rank on AUPRC and F1 metrics, which
are 0.9285 and 0.8731. Besides, TriModel wins the second rank on
MCC and its score is 0.7365. Moreover, to get a more stable and
fair comparison, we conduct the experiments five times for each
prediction approach and adopt the mean values on each metric.
The variance of the results on five-time experiments are also
displayed. The results demonstrate that MHADTI is significantly
superior to other baseline methods in predicting DTIs.

The results on Luo’s dataset [27], Zheng’s dataset [61] and
Yamanishi’s dataset [62] are presented in Table 4. For Luo’s
dataset, MHADTI achieves the best performance on both AUC and
AUPRC metrics and the scores are 0.9655 and 0.9589, respectively.
Besides, EEGDTI gets the second rank on AUC and GCN wins
the second highest score on AUC and AUPRC, respectively. Their
scores are 0.9550 and 9540, respectively. On Zheng’s data, MHADTI
model wins the highest scores on AUC and AUPRC metrics and
the scores are 0.9469 and 0.9316, respectively. TriModel gets the
second rank on AUC and AUPRC, of which sores are 0.9406 and
0.9256, respectively. Yamanishi’s dataset mainly has four sub-
datasets, which are GPCR, Enzyme, IC and NR, and the results are
presented separately. Overall, MHADTI wins the highest scores on
AUC of GPCR, AUC and AUPRC of IC and AUC of NR. Besides,
DTIGAT wins the first rank on AUC and AUPRC on Enzyme
dataset, while SGL-DTI obtains the highest scores on AUPRC of
GPCR and AUC of NR. Other results about MHADTI as well as
the comparison approaches have displayed in Table 4. Although
MHADTI cannot get the first rank on each metric, the results
in these datasets fully demonstrate that the performance of
MHADTI outperforms other SOTA approaches. Further we analyze
the generalization of MHADTI at the discussion section.

The results of An’s dataset [53] are presented in Table 5. The
results demonstrate that MHADTI wins the highest scores on ACC,
AUC, MCC and F1 metrics, and their values are 0.9432, 0.9757,
0.9622 and 0.9464, respectively. MHADTI gets the second rank on

MCC and the score is 0.9622. Besides, GCN gets a score of 0.9739
on AUPRC and wins the first rank. GAT gets the second rank on
AUC and MCC, and their scores are 0.9710 and 0.8707, respectively.
Meanwhile, SGCL-DTI ranks second on ACC and F1, and their
scores are 0.9388 and 0.9343, respectively. The results on An’s
dataset demonstrate that MHADTI has an advantage over other
comparison approaches in DTI predictions.

Experimental results of prediction approaches
with different ratios between positive and
negative samples
Different ratios between the number of positive and negative
samples have much influence on the performance of MHADTI
as well as the baseline approaches on our DrugBank dataset.
Therefore, we conduct this experiment with different ratios (#
positive samples: # negative samples) to investigate their effects
on MHADTI and all the baseline methods. Specifically, we build
three experimental datasets and each of them contains all the 15
252 positive samples. Meanwhile, these three experimental sets
contain the 15 252 negative samples, 76 260 (15 252∗5) negative
samples and 152 520 (15 252∗10) negative samples, respectively.
Then, we perform the 5-CV experiment in terms of these three
experimental datasets for all the prediction approaches in turn.
The corresponding results are shown in Table 6.

From the results, we can find that MHADTI performs best on
AUC metric under different ratios. The AUC values are 0.9522,
0.9463 and 0.9279 with 1:1, 1:5 and 1:10, respectively. MHADTI also
wins the best performance on AUPRC metric when the ratio is 1:1
and the value is 0.9352. Meanwhile, KGN_NFM and DTICNN get
the best performance on AUPRC metric when the ratios are 1:5
and 1:10, respectively, and the corresponding scores are 0.8045
and 0.6846, respectively. Besides, MHADTI wins the second rank
on AUPRC with the 1:10 ratio, while SGCL-DTI gets the second
highest scores on AUC metric with all rations and AUPRC metric
under the 1:5 ratio. DITGAT also wins the second highest value
on AUPRC under the 1:1 ratio. Overall, MHADTI achieves the best
performance in this experiment.

Validation of the top-ranked prediction results
for MHADTI
In the study, we employ the top-ranked prediction strategy [53]
to further evaluate the performance of MHADTI. Specifically, we
adopt the 5-CV experiment and the top 200 prediction samples in
each folder are selected. Therefore, we could merge the results in
each folder and get the top 1000 (200∗5) prediction samples. Then
these top 1000 predicted samples are filtered out and formed the
validation set. The results are shown in Figure 4.

For MHADTI, the top 10 and 20 prediction results are all real
DTIs. Besides, 49 out of 50, 99 out of 100, 195 out of 200, 487 out of
500 and 965 out of 1000 are real DTIs. The top-ranked prediction
results fully demonstrate that MHADTI has desirable correctness
and high credibility.

Ablation experiments
MHADTI learns the embeddings of drugs and targets via multi-
view HINs with hierarchical attention mechanisms. Therefore,
multiview HINs and hierarchical attention mechanisms have
much effect on the performance of MHADTI. Here, two sets of
ablation experiments are set up to investigate the effectiveness
of each component from these two aspects.

The first ablation experiment is to verify the effectiveness of
each HIN. A total of three HINs are constructed and employed
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Table 3. The evaluation results of MHADTI and other baseline methods on our DrugBank dataset

Methods Types ACC AUC AUPRC MCC F1

RF [55] MFP-based 0.8077 ± 0.0031 0.8281 ± 0.0028 0.8465 ± 0.0019 0.6881 ± 0.0010 0.7738 ± 0.0037
SVM [56] MFP-based 0.7965 ± 0.0022 0.8032 ± 0.0045 0.8334 ± 0.0008 0.6701 ± 0.0024 0.7802 ± 0.0025
TriModel [31] KGE-based 0.8523 ± 0.0026 0.9071 ± 0.0009 0.9142 ± 0.0025 0.7365 ± 0.0011 0.8367 ± 0.0018
KGE_NFM [32] KGE-based 0.8686 ± 0.0032 0.9178 ± 0.0022 0.9052 ± 0.0014 0.7298 ± 0.0027 0.8222 ± 0.0040
GCN [57] GNN-based 0.6318 ± 0.0109 0.8857 ± 0.0013 0.8961 ± 0.0021 0.2703 ± 0.0082 0.7789 ± 0.0034
GAT [33] GNN-based 0.7872 ± 0.0076 0.8895 ± 0.0025 0.8611 ± 0.0045 0.6241 ± 0.0066 0.8426 ± 0.0058
DTIGAT [58] GNN-based 0.8468 ± 0.0141 0.9254 ± 0.0015 0.9285 ± 0.0025 0.7144 ± 0.0035 0.8731 ± 0.0022
DTICNN [59] GNN-based 0.8561 ± 0.0043 0.9124 ± 0.0037 0.9171 ± 0.0023 0.6801 ± 0.0042 0.8385 ± 0.0072
DTIMGNN [23] GNN-based 0.8673 ± 0.0082 0.9221 ± 0.0008 0.9184 ± 0.0008 0.7021 ± 0.0041 0.8585 ± 0.0036
EEGDTI [10] GNN-based 0.8352 ± 0.0098 0.8931 ± 0.0036 0.8821 ± 0.0051 0.6629 ± 0.0022 0.8512 ± 0.0017
MK_TCMF [54] GNN-based 0.8324 ± 0.0017 0.8902 ± 0.0005 0.8723 ± 0.0029 0.6498 ± 0.0046 0.8497 ± 0.0011
SGCL-DTI [60] GNN-based 0.8767± 0.0049 0.9356 ± 0.0011 0.9201 ± 0.0015 0.7288 ± 0.0019 0.8709 ± 0.0023
MHADTI(Ours) GNN-based 0.8801± 0.0027 0.9522± 0.0031 0.9352 ± 0.0041 0.7631 ± 0.0009 0.8775 ± 0.0062

Note: The best results are marked in bold and the second-best results are marked as underlined. MFR stands for molecular-fingerprint-based approaches and
KGE denotes the knowledge-graph-embedding-based approaches.

Table 4. The evaluation results of MHADTI and other baseline methods on Luo’s dataset, Zheng’s dataset and Yamanishi’s datasets.

Methods Luo’s data Zheng’s data Yamanishi’s data

AUC AUPRC AUC AUPRC GPCR Enzyme IC NR

AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC

RF [55] 0.8923 0.9391 0.8705 0.9133 0.8423 0.8502 0.8202 0.8351 0.8402 0.8229 0.8400 0.8323
SVM [56] 0.8874 0.9265 0.8805 0.9234 0.8009 0.8534 0.7886 0.8116 0.8200 0.8199 0.8378 0.8196
TriModel [31] 0.9342 0.9449 0.9406 0.9256 0.8734 0.8301 0.9088 0.9177 0.8434 0.8110 0.8455 0.8363
KGE_NFM [32] 0.9423 0.9228 0.9102 0.9006 0.8703 0.8403 0.8805 0.8733 0.9088 0.8534 0.8201 0.8455
GCN [57] 0.9533 0.9540 0.9087 0.9097 0.7658 0.7676 0.7594 0.7970 0.7947 0.8156 0.7049 0.7553
GAT [33] 0.9294 0.9108 0.8790 0.8625 0.7753 0.7680 0.8485 0.8335 0.9084 0.8816 0.8204 0.8082
DTIGAT [58] 0.9390 0.9232 0.7286 0.7213 0.7622 0.7649 0.9627 0.9613 0.7867 0.7778 0.9120 0.9032
DTICNN [59] 0.9077 0.9070 0.9199 0.9116 0.8543 0.8510 0.9335 0.9338 0.8918 0.8890 0.7333 0.7447
DTIMGNN [23] 0.9491 0.9325 0.9053 0.8734 0.8634 0.8552 0.9132 0.8488 0.8879 0.8320 0.8603 0.8429
EEGDTI [10] 0.9550 0.9339 0.9115 0.8883 0.8793 0.8432 0.9001 0.8436 0.8960 0.8553 0.8778 0.8655
MK_TCMF [54] 0.9077 0.8988 0.9122 0.8734 0.8043 0.8339 0.8634 0.8799 0.8311 0.8589 0.8737 0.8846
SGCL-DTI [60] 0.9496 0.9388 0.9388 0.9199 0.8787 0.8720 0.9315 0.9177 0.8989 0.8883 0.9323 0.8994
MHADTI(Ours) 0.9655 0.9589 0.9469 0.9316 0.8814 0.8596 0.9440 0.9373 0.9173 0.8948 0.9099 0.9150

The best results are marked in bold and the second-best results are marked as underlined.

Table 5. Experimental results on An’s dataset for MHADTI and all the comparison methods

Methods ACC AUC AUPRC MCC F1

RF [55] 0.8222 0.8762 0.9210 0.7633 0.8323
SVM [56] 0.8078 0.8633 0.9037 0.7321 0.7989
TriModel [31] 0.8634 0.9123 0.9043 0.8922 0.9273
KGE_NFM [32] 0.8529 0.9298 0.8834 0.8444 0.8935
GCN [57] 0.8031 0.9437 0.9739 0.6432 0.8683
GAT [33] 0.9345 0.9710 0.9583 0.8707 0.9306
DTIGAT [58] 0.7954 0.8603 0.8443 0.5980 0.8111
DTICNN [59] 0.9038 0.9449 0.9413 0.7683 0.8874
DTIMGNN [23] 0.8885 0.9104 0.9232 0.8183 0.8504
EEGDTI [10] 0.9338 0.9229 0.9499 0.8425 0.8993
MK_TCMF [54] 0.9218 0.9327 0.9316 0.8283 0.8662
SGCL-DTI [60] 0.9388 0.9544 0.9537 0.8638 0.9343
MHADTI(ours) 0.9432 0.9757 0.9622 0.8887 0.9464

Note: The best results are marked in bold and the second-best results are marked as underlined.

to learn the embeddings of drugs and targets in MHADTI. With-
out loss of generality, we call these three HINs as G1, G2 and
G3, respectively. The corresponding definitions about these three
HINs named G1, G2 and G3 can be seen in the subsection of Con-
struction of Multiview HINs and Figure 1B. Then we feed these

three HINs into MHADTI with different combinations. Specif-
ically, three HINs are divided into six different combinations,
which are {G1}, {G2}, {G3}, {G1+G2}, {G1+G3}, {G2+G3}. These six HIN
combinations are fed into the MHADTI in turn and we can obtain
the prediction results which are displayed in Table 7. The ACC,
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Table 6. The results of MHADTI as well as other baseline methods under different ratios on our DrugBank dataset (# positive samples:
# negative samples=1:1,1:5 and 1:10)

Methods 1:1 1:5 1:10

AUC AUPRC AUC AUPRC AUC AUPRC

RF [55] 0.8281 ± 0.0028 0.8465 ± 0.0019 0.8206 ± 0.0018 0.7563 ± 0.0057 0.8019 ± 0.0017 0.5258 ± 0.0063
SVM [56] 0.8032 ± 0.0045 0.8334 ± 0.0008 0.8117 ± 0.0034 0.7504 ± 0.0077 0.7832 ± 0.0033 0.5016 ± 0.0102
TriModel [31] 0.9071 ± 0.0009 0.9142 ± 0.0025 0.9129 ± 0.0014 0.7763 ± 0.0066 0.8944 ± 0.0045 0.5863 ± 0.0086
KGE_NFM [32] 0.9178 ± 0.0022 0.9052 ± 0.0014 0.9209 ± 0.0024 0.8045 ± 0.0027 0.9006 ± 0.0054 0.6614 ± 0.0063
GCN [57] 0.8857 ± 0.0013 0.8961 ± 0.0021 0.9294 ± 0.0012 0.7700 ± 0.0004 0.9105 ± 0.0024 0.6449 ± 0.0031
GAT [33] 0.8895 ± 0.0025 0.8611 ± 0.0045 0.8822 ± 0.0009 0.6906 ± 0.0017 0.8371 ± 0.0046 0.5621 ± 0.0022
DTIGAT [58] 0.9254 ± 0.0015 0.9285 ± 0.0025 0.8911 ± 0.0025 0.7472 ± 0.0008 0.8073 ± 0.0011 0.6598 ± 0.0047
DTICNN [59] 0.9124 ± 0.0037 0.9171 ± 0.0023 0.9099 ± 0.0024 0.7655 ± 0.0033 0.9109 ± 0.0040 0.6846 ± 0.0055
DTIMGNN [23] 0.9221 ± 0.0008 0.9184 ± 0.0008 0.9301 ± 0.0015 0.7746 ± 0.0021 0.9015 ± 0.0057 0.6205 ± 0.0037
EEGDTI [10] 0.8931 ± 0.0036 0.8821 ± 0.0051 0.8806 ± 0.0035 0.7508 ± 0.0025 0.8534 ± 0.0014 0.6333 ± 0.0096
MK_TCMF [54] 0.8902 ± 0.0005 0.8723 ± 0.0029 0.8989 ± 0.0028 0.7795 ± 0.0102 0.8651 ± 0.0125 0.5302 ± 0.0108
SGCL-DTI [60] 0.9356 ± 0.0011 0.9201 ± 0.0015 0.9308 ± 0.0024 0.7936 ± 0.0066 0.9177 ± 0.0010 0.6135 ± 0.0100
MHADTI(ours) 0.9522± 0.0031 0.9352 ± 0.0041 0.9463± 0.0012 0.7825 ± 0.0005 0.9279 ± 0.0031 0.6779 ± 0.0087

The best results are marked in bold and the second-best results are marked as underlined.

Figure 4. The number of DTIs verified in the top 1000 prediction results
by MHADTI.

Table 7. The ablation experimental results on multi-view HINs
for MHADTI

G1 G2 G3 ACC AUC AUPRC MCC F1

� � � 0.7943 0.9212 0.9038 0.6138 0.7837
� � � 0.7807 0.9138 0.8886 0.5850 0.7639
� � � 0.7887 0.9160 0.8922 0.6000 0.7730
� � � 0.7921 0.9277 0.9080 0.6124 0.7801
� � � 0.8000 0.9191 0.8958 0.6184 0.7849
� � � 0.8001 0.9292 0.9086 0.6236 0.7883
� � � 0.8801 0.9522 0.9352 0.7631 0.8775

AUC, AUPRC, MCC and F1 are employed as the metrics to evaluate
the performance. Besides, all the parameters in the experiment
related MHADTI are consistent except for the input combination
of HINs.

From the results in Table 7, we can see that MHADTI achieves
the best performance in all the five metrics. The values for
ACC, AUC, AUPRC, MCC and F1 are 0.8801,0.9522, 0.9352, 0.7631
and 0.8775, respectively. Besides, the prediction performance of
MHADTI is improved with the increase of HIN number. The results

Table 8. The ablation experimental results on hierarchical
attention mechanisms for MHADTI

NLA SLA GLA ACC AUC AUPRC MCC F1

� � � 0.6887 0.7011 0.7553 0.4255 0.6566
� � � 0.8322 0.9451 0.9291 0.6842 0.8268
� � � 0.8629 0.9501 0.9347 0.7356 0.8584
� � � 0.8801 0.9522 0.9352 0.7631 0.8775

NLA, SLA and GLA denote the node-level attention, semantic-level
attention and graph-level attention, respectively. The best results are in
bold.

of taking two HINs as input is better than that of taking one
HIN as input overall. The combination of {G2 + G3} wins the
second rank which are 0.8001, 0.9292, 0.9086, 0.6236 and 0.7883
on the corresponding evaluation metrics. However, comparing the
combination {G1 + G2 + G3}, its performance is lower by 9.9%,
2.4%, 2.9%, 22.3% and 11.3% on ACC, AUC, AUPRC, MCC, and F1
respectively. In the results of taking one HIN as input G1 gets the
best performance. The results in this set of experiments illustrate
that three HINs are essential for MHADTI in predicting DTIs
accurately.

The second ablation experiment is to evaluate the effectiveness
of different level-attentions on MHADTI. The proposed hierar-
chical attention mechanisms contain node-level attention (NLA),
semantic-level attention (SLA) and graph-level attention (GLA),
respectively. Similar to the ablation experiment on HINs, we also
split the attentions into three subsets, which are without all
attentions, without SLA and GLA attentions and without GLA
attention. Here, we still employ these five metrics to evaluate the
performance of MHADTI.

For the results shown in Table 8 and Figure 5, with the addi-
tion of different level attentions, the performance of MHADTI
is improved gradually. Specifically, the performance of MHADTI
is worst when it does not employ any attention. In this case,
the values on ACC, AUC, AUPRC, MCC and F1 are 0.6887, 0.7011,
0.7553, 0.4255 and 0.6566. Instead, MHADTI achieves the best
performance when it adopts all the three level attentions. The
ACC, AUC, AUPRC, MCC and F1 scores are 0.8801, 0.9522, 0.9352,
0.7631 and 0.8775, respectively. Considering more level attentions,
the performance of MHADTI will achieve a better performance.
Based on the results of this experiment, we can confirm that the
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Figure 5. The ablation experimental results on hierarchical attention
mechanisms for MHADTI.

Figure 6. The values of ACC, AUC, APPRC, MCC and F1 under different
embedding sizes. From the results, we can find out that MHADTI performs
best when the embedding size is 128. Therefore, we adopt 128 as the
embedding size for MHADTI.

hierarchical attention mechanism could improve the prediction
accuracy of MHADTI effectively.

Node embedding size analysis
In this experiment, we investigate the effects of embedding size
on MHADTI model and the results are shown in Figure 6. Here, the
embedding size is 32, 64, 128, 256, and 512, respectively. MHADTI
achieves the best performance when the embedding size is 128
overall. The values on ACC, AUC, MCC and F1 are highest when the
embedding size is 128, which are 0.8801, 0.9522, 0.9352 and 0.8775,
respectively. The value for AUPRC is highest when the embedding
size is 256, which is 0.9379. It can be seen that the performance
of MHADTI keeps getting better with the increase of embedding
size from 32 to 128, while its performance decreases with the
embedding size increasing from 128 to 512. As a result, we adopt
the embedding size as 128 for MHADTI in this study.

Contributions of different meta-paths to MHADTI
In this study, MHADTI learns the semantic-level embeddings of
drugs based on DTD and DTTD and learns the semantic-level
embeddings of targets based on TDT and TDDT. These meta-paths
have different semantic biological meanings. To fully evaluate the

Table 9. Results of the contribution of different meta-paths on
MHADTI

ACC AUC AUPRC MCC F1

MHADTI w/o DTTD 0.8376 0.9440 0.9283 0.6904 0.8305
MHADTI w/o DTD 0.8304 0.9292 0.9094 0.6737 0.8238
MHADTI w/o TDDT 0.8565 0.9476 0.9321 0.7204 0.8514
MHADTI w/o TDT 0.8137 0.9321 0.9141 0.6462 0.8050
MHDATI(ours) 0.8801 0.9522 0.9352 0.7631 0.8775

Note: MHADTI w/o DTTD, MHADTI w/o DTD, MHADTI w/o TDDT, MHADTI
w/o TDT mean that MHADTI does not contain meta-path DTTD, DTD, TDDT
and TDT, respectively.

contribution of these meta-paths to MHADTI models in detail, we
conduct an experiment on DrugBank dataset and the correspond-
ing results are shown in Table 9. Particularly, MHADTI denotes
that it contains all the four meta-paths.

From the results listed in the table, we can find that each meta-
path plays an essential role on MHADTI. Specifically, meta-path
DTD has a relatively great contribution to MHADTI than meta-
path DTTD. The results for MHADTI w/o DTTD are 0.8376, 0.9440,
0.9283, 0.6904 and 0.8305, while the results for MHADTI w/o DTD
are 0.8304, 0.9292, 0.9094,0.6737 and 0.8238 on ACC, AUC, AUPRC
MCC and F1 metric, respectively. Besides, the result for meta-
paths TDT and TDDT demonstrates that TDT has a relatively
great contribution to MHADTI than meta-path TDDT. Based on
the results, we can further confirm that each meta-paths have
different contributions to the performance of MHADTI.

Results of similarity networks with different
thresholds on MHADTI
In this study, we measure the similarity between drugs or targets
from different aspects with their multisource information. Since
many drugs or targets have higher similarities in the training and
testing datasets, we adopt the similarity cutoff strategy on the
training and testing sets to evaluate different similarity thresh-
olds of drugs and targets on MHADTI [63]. The experiments are
performed as follows:

First, we construct the similarity networks of drugs and targets.
Then for the drug similarity networks, we calculate the different
similarity cutoff thresholds as is mentioned in the reference [63].
Meanwhile, for the target similarity networks, we also measure
the similarity cutoff thresholds in the same manner with drug
similarity networks. After that, novel drug similarity networks and
target similarity networks are both established under similarity
cutoff thresholds. Lastly, we feed these novel drug similarity
networks and target similarity networks into MHADTI to evaluate
the performance of MHADTI.

Specifically, in the study [63], the similarity cutoff value is
mean(P)+3×std(P), where P is the matrix representation of the
drug (target) similarity networks, mean(P) denotes the mean value
of matrix P and std(P) stands for the standard deviation of matrix
P. Moreover, we conduct the experiments under four thresh-
olds, which are mean(P), mean(P)+std(P), mean (P)+2×std(P) and
mean(P)+3×std(P), respectively. A comparison report with similar-
ity cutoff thresholds is shown in Table 10.

Results demonstrate that the different thresholds have effects
on the performance of MHADTI. Specifically, when the threshold
value is (mean(P)+std(P)), MHADTI performs best on ACC, MCC
and F1. The corresponding scores are 0.9048, 0.8137 and 0.9103.
When the threshold value is (mean(P)+2×std(P)), MHADTI per-
forms best on AUC and AUPRC. The corresponding scores are
0.9689 and 0.9594, respectively. The last line in Table 10 is the
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Table 10. Evaluation results of drug and target similarity
networks with different thresholds on MHADTI

Cut-off
thresholds

ACC AUC AUPRC MCC F1

mean(P) 0.8905 0.9520 0.9347 0.7851 0.8452
mean(P)+std(P) 0.9048 0.9565 0.9453 0.8137 0.9103
mean(P)+2×std(P) 0.8952 0.9689 0.9594 0.8015 0.9091
mean(P)+3×std(P) 0.8662 0.9530 0.9479 0.7156 0.8333
Without (ours) 0.8801 0.9522 0.9352 0.7631 0.8775

result of MHDATI without any similarity cutoff thresholds. We
find that the experimental results of MHADTI have improved to
a certain extent. The results of this experiment demonstrate and
further confirm that cutoff thresholds of similarity networks of
drugs and targets affect the performance of MHADTI.

Analysis of prediction results for common drugs
and targets
Discovering the interactions accurately for some common drugs
and targets is another effective manner to verify the effectiveness
of DTI interaction prediction models [23]. In this subsection, we
firstly select two representative drugs named Apomorphine and
Fostamatinib and then analyzed the prediction results for these
two drugs. Specifically, we employ all the known DTIs except for
the interactions related to the candidate drug in the DTI network
to train MHADTI and compare the prediction results with the
ground-truth interactions. The corresponding results are shown
in Table 11. For Apomorphine, the top-10 prediction DTIs are true
interactions, while for Fostamatinib, nine of top-10 prediction
DTIs are all true interactions.

Similarly, two common targets named ADRA1A and CYP19A1
are also employed to validate the effectiveness of MHADTI.
The corresponding results are displayed in Table 12. The results
demonstrate that 10 out of top-10 prediction interactions for
ADRA1A and the nine out of top-10 prediction interactions for
CYP19A1 are all true, which further illustrates the reliability of
MHADTI.

Case study: Novel DTI predictions
Although MHADTI has a good performance on each benchmark
dataset, it does not fully demonstrate that the proposed model
is capable of effectively predicting novel DTIs. As a result, we
execute the case study as Zhou [64] and Sameh [31] to further
validate the ability of MHADTI in discovering novel DTIs. More
importantly, case studies have been treated as an effective man-
ner that employs MHADTI to solve practical problems.

Specifically, our case study experiment is performed on Drug-
Bank dataset, which includes 15 252 DTIs involving 4358 drugs
and 2407 targets. We firstly employ all the known DTIs to train
MHADTI and then predict novel DTIs. After that, all the predicted
DTIs are sorted according to the interaction probability values
scored by MHADTI. We find that many predicted novel DTIs with
high interaction probability scores are verified by the literature.
Here, we select five novel predicted DTIs and the results are
presented in Table 13.

The first one is the interaction between drug Pregabalin and
gene CACNA2D1. Previous research identified CACNA2D1 as
a gene modulator of intraocular pressure (IOP). In particular,
drug pregabalin had a high affinity and selectivity with gene
CACNA2D1, which played an important role in modulating IOP

[65]. For gene CYP2D6, author Samer found that its enzyme
product had an impact on oxycodone’s metabolism and clinical
efficacy. The activity of CYP2D6 was highly correlated with
oxycodone experimental pain assessment [66]. Sunitinib was
a drug which could interact with neurological diseases such
as depression. Sunitinib was a predicted drug with gene
prostaglandin-endoperoxide synthase 2 (PTGS2) by MHADTI
model. It had been reported that gene PTGS2 was strongly
associated with depression, which is supported by the published
literature [67]. MHADTI uncovers a novel interaction between
drug acetaminophen and gene POLE. A study found that
acetaminophen could affect the expression of POLE mRNA by
using hepatoma cells cultiv-atedinside a microfluidic biochip
with or without acetaminophen [68]. Research showed that
Gefitinib was the potential to be affected drug–drug interactions.
For example, it was metabolized mainly by gene CYP3A5 and
gene CYP3A5. CYP3A5 inhibitors or inducers may significantly
alter their oral clearance and systemic or tumoral exposures[69].
All these five novel DTIs are identified by MHADTI and supported
by the literature. These case studies fully could demonstrate the
reliability of MHADTI in discovering interactions between drugs
and targets.

Discussion
In this section, we will discuss two problems, one is the failure
cases when establishing MHADTI model and the other is the
generalization and applicability of MHADTI.

Failure cases for establishing MHADTI
In the process of building the MHADTI model, we encounter some
failure cases and make an improvement on these aspects.

The first failure case is the number of layers at the hier-
archical attention mechanisms. At first, MHADTI only employs
node-level attention and semantic level attention like the HAN
model. However, the performance of the proposed model is infe-
rior to other baseline methods, such as SGCL-DTI [60]. Inspired
by the multiview methods and coupled with the multisource of
drugs and targets, we established three multiview drug–target
HINs and employed the graph-level attention in MHADTI. With
the hierarchical attention mechanisms, MHADTI could learn the
embedding of drugs and targets from different views and achieve
a relatively satisfactory result.

The second failure case is the selection of meta-paths. As
we know, since meta-paths could capture complex relationships
that effectively reveal structural and semantic information in
HINs, various meta-paths will imply different semantic meanings
well. At first, we only select two meta-paths, which are DTD and
TDT for the proposed model. However, the result of MHADTI
is the worst of all the baseline methods since MHADTI could
not learn the embeddings with semantic-level attention. Hence,
two other meta-paths which are DTTD and TDDT are applied to
MHADTI. The performance of MHADT has great improvement.
In the future, more meta-paths with rich semantic information
can also be applied to the proposed model to further improve the
performance of the model.

Besides, some parameters, such as the number of attention
heads L and the feature dimension of drugs and targets, also
need to tune based on the experimental results. For MHADTI, the
number of attention head L is 8 and the dimension of drugs and
targets is 128, ultimately.
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Table 11. Prediction results for Apomorphine and Fostamatinib with MHADTI

Drug ID Drug name Target ID Target name Result

DB00714 Apomorphine P02768 ALB True
P28335 HTR2C True
P28221 HTR1D True
P28222 HTR1B True
P49888 SULT1E1 True
P08908 HTR1A True
P18825 ADRA2C True
O43704 SULT1B1 True
Q05940 SLC18A2 True
P50226 SULT1A2 True

DB12010 Fostamatinib P17612 PRKACA True
Q9Y616 IRAK3 True
P41240 CSK True
Q06418 TYRO3 True
P53671 LIMK2 True
Q9BYT3 STK33 True
O43353 RIPK2 True
Q06418 TYRO3 True
P08684 CYP3A4 False
P07332 FES True

Table 12. Prediction results for ADRA1A and CYP19A1 with MHADTI

Target ID Target name Drug ID Drug name Result

P35348 ADRA1A DB00502 Haloperidol True
DB00368 Norepinephrine True
DB01624 Zuclopenthixol True
DB00875 Flupentixol True
DB00777 Propiomazine True
DB01295 Bevantolol True
DB06144 Sertindole True
DB00610 Metaraminol True
DB00334 Olanzapine True
DB00935 Oxymetazoline True

P11511 CYP19A1 DB00481 Raloxifene True
DB00655 Estrone True
DB00333 Methadone True
DB00856 Chlorphenesin True
DB00858 Drostanolone True
DB00624 Testosterone True
DB06147 Sulfathiazole True
DB14598 Anhydrous True
DB01406 Danazol True
DB00116 Tetrahydrofolate False

The generalization and applicability of MHADTI
To fully demonstrate the generality of MHADTI, we perform the
experiments on five different datasets and compare MHADTI with
other SOTA approaches. Results demonstrate that MHADTI per-
forms best on our DrugBank dataset, Luo’s dataset [27], Zheng’s
dataset [61]. Meanwhile, on Yamanishi’s dataset [62] and An’s
dataset [53], MHADTI does not get the highest scores on each
evaluation metric. As a result, we would like to give a discussion
about the generalization of MHADTI.

Firstly, the framework of MHADTI shows that it needs to con-
struct multiview HINs with the multisource of drugs and targets.
The information mainly contains drug fingerprints, drug side
effects and target sequences and so on. Therefore, the rich infor-
mation about drugs and targets is the data foundation of MHADTI.

As we know, some of the drugs and targets need not always
be annotated by all kinds of information. For example, in the
Gene Ontology Annotation dataset, some targets do not have their
annotation information, which means that we could not measure
their GOA-based similarities. Besides, there are some drugs whose
molecular structure does not exist. The reliability of the multiview
HINs will be low, which may affect the performance of MHADTI.
In practice, drugs and targets in our DrugBank datasets have rich
annotation information than those in Yamanishi’s dataset [62],
which further verifies our assumption.

Secondly, the size of the heterogeneous network will affect the
performance of MHADTI. MHADTI learns the embedding of drugs
and targets from the meta-based neighbors with the node-level
attention. If the size of the heterogeneous network is small, nodes
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Figure 7. A toy example for learning the embedding representation of drug D1 (named Cariprazine) with MHADTI.

will have fewer meta-based-neighbors or even no meta-based-
neighbor nodes. MHADTI could not learn the embedding at the
node-level. For example, there are only 54 drugs and 26 targets in
the NR of Yamanishi’s dataset [62]. The performance of MHADTI
on NR of Yamanishi’s dataset is inferior to its performance on
Luo’s and Zheng’s datasets (see Table 4).

In summary, MHADTI could achieve competitive results on
higher quality and larger size multiview HINs.

Conclusion
Accurately identifying the DTIs is an essential step in drug
discovery and drug repositioning. In this study, we propose a novel
computational model called MHADTI to predict DTIs. Firstly,

MHADTI adopts the multisource of drugs and targets to construct
their similarity networks and establishes three drug–target HINs
from different views. Then MHADTI learns the embeddings of
drugs and targets from HINs with the hierarchical attention
mechanisms which include the node-level, semantic-level and
graph-level attentions. Lastly, MHADTI employs MLP to predict
DTIs based on deep feature representations of drugs and targets.

To evaluate the performance of MHADTI, we conduct the 5-
CV experiment and compare it with eight other state-of-the-
art approaches. Experimental results demonstrate that MHADTI
achieves the best performance on five evaluation metrics overall.
Ablation and parameter sensitivity experiments are performed
to obtain the best parameters of MHADTI. Analysis of prediction
results for some interested drugs further exhibits the reliability of
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Figure 8. A toy example for learning the embedding representation of target T1 (named KLKB1) with MHADTI.

Table 13. Predicted novel DTIs supported by the literature

DrugID DrugName TargetID TargetName Scores PMID

DB00230 Pregabalin P54289 CACNA2D1 0.952 31714057
DB00497 Oxycodone P10635 CYP2D6 0.934 20590588
DB01268 Sunitinib P35354 PTGS2 0.973 31423209
DB00316 Acetaminophen Q07864 POLE 0.977 22230336
DB00317 Gefitinib P20815 CYP3A5 0.982 15900286

Note: Scores denote the predicted DTI interaction probability values by MHADTI.

MHADTI. Moreover, the code and data of MHADTI are uploaded
on the Github, which is convenient to make a comparison and
improvement.

In the future, we can do some work from the following aspects.
First, we need to build a more reliable negative training set. In
this study, we randomly selected the same number of negative
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Figure 9. The 5-folder cross-validation strategy used in this study.

drug–target pairs as positive pairs. The negative drug–target
pairs in the training set may be not reliable, which have a great
influence on the performance of prediction models. Secondly, we
select four representative meta-paths and learn the semantic-
level embeddings for drugs and targets. More meta-paths with
rich biological meaning should be selected for learning the
embedding representations. Lastly, we can apply MHADTI to
other link prediction problems such as miRNA–disease and drug–
miRNA association prediction.

Key Points

• MHADTI evaluates the similarities of drugs and targets
with their multisource information and constructs mul-
tiview HINs for learning their embeddings.

• MHADTI could learn the embeddings of drugs and
targets with the hierarchical attention mechanisms
which include node-level, semantic-level and graph-
level attentions, respectively.

• MHADTI learns the optimal combination of meta-path-
based neighbors, multi-meta-paths and multi-graphs in
the hierarchical manner, which could better capture
the complex structure and rich semantic information in
different HINs.

• The evaluation results demonstrate that MHADTI out-
performs other state-of-the-art approaches in DTI.
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APPENDIX A: The similarity calculation for
drugs and targets
Drug similarity calculation
In this research, drug similarities are evaluated from three aspects
which are side effects, molecular fingerprints and Gaussian Inter-
action Profile (GIP) kernel, respectively.

Each drug has different side effects which can formulate its
drug side effect annotation set. Suppose there are two drugs
named di and dj, their corresponding drug side effect annotation
sets are Sdi

and Sdj
and the drug side-effect-based similarity

between di and dj can be denoted as

Simsideeffect(di, dj) = 1
2

·
( |Sdi

∩ Sdj
|

|Sdi
| + |Sdi

∩ Sdj
|

|Sdj
|

)
(16)

For molecular fingerprint-based similarity, we firstly collect the
SMILES of drugs and then obtain their 167 bits fingerprint vectors
with RDKit software [70]. The name of the molecular fingerprint
is MACCS key. Suppose there are two drugs named di and dj,
and their molecular fingerprint vectors be denoted as Vdi

and
Vdj

, respectively; the fingerprint-based cosine similarity can be
formulated as

Simfingerprint(di, dj) = Vdi
· Vdj√

(Vdi
)2 ·

√
(Vdj

)2
(17)

Besides, the drug similarity can also be evaluated based on GIP
kernel [71]. Suppose there is one DTI network; its matrix repre-
sentation can be expressed as M. The GIP kernel-based similarity
between drugs can be formulated as

KD(di, dj) = exp
(−δd‖ IP(di) − IP(dj)‖2) , (18)

where IP(di) and IP(dj) represent the corresponding row for drug
di and dj in the matrix M. The greater the difference between the
rows belonging to drug di and dj, the smaller the KD(di, dj), and
vice versa. Parameter δd is widely employed to control the kernel
bandwidth in the research [72], which can be expressed as

δd = δ′
d/

(
1
nd

nd∑
k=1

‖IP(dk)‖2

)
, (19)

where δ′
d equals to 1.0 and nd denotes the number of drugs in the

DTI network.

Target similarity calculation
For targets, we calculate their similarity based on functional
annotation, protein domain and protein sequence information,
respectively.

Gene Ontology is a controlled vocabulary and has three inde-
pendent sub-ontologies, which are Biological Process (BP), Molec-
ular Function (MF) and Cell Components (CC) [73]. Targets can be
annotated with BP, MF and CC terms and their semantic similarity
can be inferred from these three aspects [74]. With lost generality,
we take BP as an example to calculate semantic similarity with
STE approach [75]. First, the Information Content (IC) of one term

t can be denoted as IC(t), which can be expressed as

IC(t) =log(dp(t)) ·
⎛
⎝log

⎛
⎝ ∑

ti∈Ac(t)

dp(ti)

⎞
⎠+1

⎞
⎠ ·

(
1− log |(Ds(t))|

log(N + 1)

)
, (20)

where dp(t) denotes the depth of term t, Ac(t) and Ds(t) represent
the ancestor term set and descendant term set in BP ontology. N
is the number of total terms of term t in the whole GO structure.
|·| denotes the number of elements in the set.

Then, we evaluate the weight for the semantic relationship
between ti and its parent term tj, which can be formulated as

wtitj =

∑
tn∈Ds(tj)

IC(tn)

∑
tm∈Ds(ti)

IC(tm)
, (21)

where tm and tn are the terms in Ds(ti) and Ds(tj), respectively.
Term IC can be divided into two parts: one is the inherited IC

from its parents, and the other is the extended IC by itself [74]. The
inherited IC of term ti from its parent term tj denoted as ICIh(ti) is
measured as

ICIh(ti) = wtitj · IC(tj). (22)

The total inherited IC from its all parents terms can be expressed
as

ICIh(ti) =
∑

tk∈Pr(ti)

wtitk · IC(tk), (23)

where Pr(ti) denotes the parent term set of term ti, and wtitk can be
calculated by Equation.6. The extended IC of term ti is formulated
as

ICextended(ti) = IC(ti) − ICIh(ti). (24)

Suppose there is one term named t and its annotation set is St;
its extended IC value for t is calculated as

ICextended(St) =
∑
ti∈St

ICextended(ti). (25)

Suppose there are two targets named ni and nj and their corre-
sponding annotation term sets are Sni and Snj , respectively; their
semantic similarity can be expressed as

SimSWE(ni, nj) = ICextended(Sni ∩ Snj )

ICextended(Sni ∪ Snj )
(26)

We calculate the similarities for all target pairs and then
construct the BP-based semantic similarity network that is fully
connected. Similarly, MF-based and CC-based semantic similarity
networks can also be constructed, which is the same to the BP-
based semantic similarity network. These three semantic net-
works are represented as NetBP, NetMF and NetCC, respectively. After
that, we adopt the SNF (similarity network fusion) method [76],
which is an effective and widely used way to fuse different similar-
ity networks and ultimately get one integrated semantic similarity
network named Netintegrated.
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Protein domain-based similarity is also one common manner
to measure the similarities between targets. Suppose there are
two targets ni and nj and their corresponding domain annotation
sets are Sni and Snj . Their protein domain-based similarity can be
formulated as

Simdomain(ni, nj) = 1
2

·
( |Sni ∩ Snj |

|Sni |
+ |Sni ∩ Snj |

|Snj |

)
. (27)

Lastly, we measure the protein sequence similarity based on
the pseudo-position specific scoring matrix (PsePSSM) [77]. Each
protein sequence can be represented as a (20+20×λ)-dimensional
vector. Suppose there are two targets denoted as ni and nj and their
PsePSSM-based feature vectors can be denoted as VPPni

and VPPnj
,

the sequence-based similarity can be formulated as

Simsequence(ni, nj) =
VPPni

· VPPnj√
(VPPni

)2 ·
√

(VPPnj
)2

(28)

APPENDIX B: Two examples of learning the
embeddings of drugs and targets with the
weights at different level attention
In this study, we employ MHADTI to learn to embeddings of drugs
and targets with the hierarchical attention mechanisms. To show

the learning process more concretely, we select one drug named
Cariprazine (DB06016) and one target named KLKB1 (IDP03952) as
the examples to display the weights at different level attention.

The process of learning the embeddings of drug Cariprazine
with MHADTI is shown in Figure 7. There are totally two meta-
paths named �1 and �2 and three views named G1, G2 and
G3. Firstly, at the node-level, MHADTI learns the embedding of
drug Cariprazine with their different meta-path-based neighbors
under the meta-paths and views. Then, at the meta-path level,
MHADTI learns the embedding of drugs Cariprazine with meta-
path DTD and TDDT under each view. Finally, at the graph level,
MHADTI learns the ultimate embedding of drugs from different
graph-views. The weights at each step can be seen in Figure 7. The
learning process of target KLKB1 is similar to drug Cariprazine
and we do not repeat it anymore. The whole process has been
presented in Figure 8.

APPENDIX C: 5-folder cross-validation
strategy used in our study
We employ the 5-folder cross-validation (5-CV) strategy to eval-
uate the performance of MHADTI and the other comparison
approaches. To demonstrate the 5-CV strategy more comprehen-
sively, we depict its execution process by Figure 9. The flow of data
and detailed implementation steps can be clearly presented.
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