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Abstract—The measurement of gene functional similarity plays a critical role in numerous biological applications, such as gene

clustering, the construction of gene similarity networks. However, most existing approaches still rely heavily on traditional computational

strategies, which are not guaranteed to achieve satisfactory performance. In this study, we propose a novel computational approach

calledGOGCN to measure gene functional similarity by modeling the Gene Ontology (GO) through Graph Convolutional Network

(GCN). GOGCN is a graph-based approach that performs sufficient representation learning for terms and relations in the GO graph.

First, GOGCN employs the GCN-based knowledge graph embedding (KGE) model to learn vector representations (i.e., embeddings)

for all entities (i.e., terms). Second, GOGCN calculates the semantic similarity between two terms based on their corresponding vector

representations. Finally, GOGCN estimates gene functional similarity by making use of the pair-wise strategy. During the representation

learning period, GOGCN promotes semantic interaction between terms through GCN, thereby capturing the rich structural information

of the GO graph. Further experimental results on various datasets suggest that GOGCN is superior to the other state-of-the-art

approaches, which shows its reliability and effectiveness.

Index Terms—Graph convolutional network, knowledge graph embedding, Gene Ontology, gene functional similarity

Ç

1 INTRODUCTION

IN recent years, many gene functional similarity approaches
have been proposed and widely used in computational

molecular biology, such as gene function analysis and predic-
tion [1], [2], [3], gene clustering [4], protein interaction predic-
tion [5], disease gene prioritization [6]. Compared with
sequence and structure similarity, the functional similarity is
more informative for understanding the biological roles and
functions of genes [7].

GO is a directed acyclic graph comprising three orthogo-
nal ontologies: biological process (BP), cellular component
(CC), and molecular function (MF). Genes and their prod-
ucts, collectively called genes in this article, are usually
annotated with diverse GO terms, which is useful for
describing the behavior of genes. Accordingly, it is quite
effective that utilizing GO annotation to measure gene func-
tional similarity. In this premise, many approaches based

on the GO graph and GO annotation have been proposed
for measuring gene functional similarity. On the whole,
these approaches could be generally divided into two cate-
gories: pair-wise and group-wise approaches.

Generally speaking, for pair-wise approaches, the func-
tional similarity between two genes can be inferred from the
semantic similarity between their corresponding annotated
terms. In consequence, there are twomain steps for pair-wise
approaches when estimating gene functional similarity. The
first step is computing semantic similarity values between
annotated terms by taking advantage of term comparison
measures. The second step is to calculate gene functional sim-
ilarity values using the obtained semantic similarity values.
Three main rules—average rule (AVG), maximum rule
(MAX), and best match average rule (BMA)—are applied
into the second step. For example, Resnik [8] proposed a
pair-wise approach where the semantic similarity between
two terms is equal to the information content (IC) of their
lowest common ancestor (LCA) term. Jiang and Conrath [9],
and Lin [10] took the specificity of terms themselves into con-
sideration. By contrast, Wang [11] designed an improved
algorithm to measure semantic similarity between terms by
exploiting the inherited relationship of terms. Each edge in
the GO graph is assigned a weight parameter called the
semantic contribution factor. Bien [12] improved method
Wang by taking the entire GO structure into consideration.
Method simDEF [13] measured semantic similarity between
terms by exploiting their definition in a specific corpus.
Besides, Yu [14] put forward HPHash model to compute the
taxonomic similarity betweenGO terms.

Although traditional pair-wise approaches are used
widely in past decades, they may have some drawbacks.
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For example, method Resnik and Lin may suffer from
’shallow annotation’ problem [11]. Concerning method
Wang, it may cause semantic loss or overload when we
assign 0.8 and 0.6 weight values to the relation ’is a’ and
’part of’ respectively. Moreover, method Wang measured
the semantic value of terms considering their ancestor terms
only. For method simDEF, its performance depends on the
context definition of terms to a large extent.

According to the true path rule, a gene annotated with
some terms also is annotated with the ancestors of these
terms [7]. Accordingly, group-wise approaches measure
gene functional similarity by integrating the annotated terms
and their ancestors into a set firstly. Then, the functional sim-
ilarity between genes is translated into the similarity between
their corresponding annotated term sets. Gentleman [15]
proposed an approach called simUI that takes the ratio of the
number of terms between term sets as the final functional
similarity. Subsequently, many approaches improved simUI
by considering the IC of terms. For example, Yu [16] com-
puted functional similarity of proteins with their overlap of
GO annotations term sets. Inspired by Sanchez, all descend-
ants of the term contributed to the calculation of IC in SORA
[7]. After that, WIS [17] suggested that the IC of a term has a
great connection with its depth in the GO graph and made
some improvements. Furthermore, SORA and WIS consid-
ered that the IC of a term contains two parts: the first one
called extended semantics is originated from itself and the
second one called inherited semantics is inherited from its
direct ancestor, which demonstrated that SORA and WIS
made the best use of the specificity of annotation terms.
Apart from the aforementioned, some effective models [18],
[19] based on vector space were proposed. In this study, we
refer to the basic vector space model mentioned by Zhang
[19] as VSM. Specifically, VSM model adopted the one-hot
encoding style to translate the term set into a vector whose
dimension is equal to the term number and each dimension
corresponds to one annotation term, indicating whether it
annotates the gene or not. Afterward, VSM estimated the
gene functional similarity by computing the cosine similarity
of two vectors. Yu [20] proposed a novel method called
HashGO andmeasured the semantic similarity between pro-
teins based on their low-dimensional representations, which
was constructed by protein-term association matrix with a
series of hash functions.

To the best of our knowledge, group-wise approaches
also have some shortcomings. Taking the aforementioned
methods as examples, Method simUI ignored the semantics
of terms and the relationship between terms. Method San-
chez only took the leaf terms and directed descendant terms
into consideration when calculating the IC of terms. SORA
and WIS relied heavily on the IC of terms, which may lead
to higher time consumption. VSM ignored the structure
information of the GO graph and the specificity of terms.

In summary, how to measure gene functional similarity
reliably is still a challenging task. In this paper, we propose
a novel GCN framework with KGE techniques to measure
gene functional similarity. The main contributions of
GOGCN are summarized as follows:

� We put forward a novel gene functional similarity
measurement framework utilizing GCN to model

the GO graph. The framework can effectively cap-
ture the structure information of the GO graph.

� In system biology, GOGCN is the first work leverag-
ing GCN to model the GO graph for learning the vec-
tor representations of terms so as to measure the
gene functional similarity.

� GOGCN makes a great improvement in the mea-
surement of semantic similarity between terms.

� Extensive experimental results on various datasets
show the effectiveness and reliability of GOGCN by
comparing it with the state-of-the-art baselines.

2 RELATED WORK

In this section, we briefly introduce GCN and its applications
in KGE and bioinformatics. To the best of our knowledge, so
far no work has applied GCN into the measurement of gene
functional similarity.

Kipf [21] first proposed GCN to model graph-structure
data, whose core idea is to implement convolution operation
on a graph based on neighborhood structure for learning the
vector representations of nodes, which successfully general-
izes Convolutional Neural networks (CNNs) to non-euclid-
ean data. GCN and some of its variants have been achieved
significant performances in node classification [21], [22] and
link prediction [23]. However, most GCN methods focus on
representation learning of nodes in undirected graphs such
as Cora, Citeseer and Pubmed [24]. For directed acyclic
graphs with specific relationships between two nodes, such
as GO graph, applying GCN directly into representation
learning of nodes will result in bad effectiveness of learned
representations since the relationships and their direction are
ignored. To address this issue, several researches [25], [26],
[27] onGCN formodelingmulti-relational graphs attempting
representation learning of both nodes and relationships are
shown remarkable performance.

KGE is also called knowledge representation learning,
whose basic idea is to learn the representations of entities
and relations for predicting the missing links of knowledge
graphs. R-GCNs [23] is the first to apply the GCN framework
into KGE, followed by other approaches, such as VR-GCN
[28], COMPGCN [29]. KGE models based on GCN consist of
an encoder: GCN layers producing latent feature representa-
tions of entities and relations, and a decoder: a link prediction
model utilizing these representations to predict labeled edge
and update these representations. Link prediction models
can be classified into three categories: translation models like
TransE [30], tensor decomposition models like DistMult [31],
and neural networkmodels like ConvE [32].

Very recently, researchers have developed numerous
GCN-based approaches to tackle various bioinformatics
tasks [33]. For example, Huang [34] used GCNs to predict
associations between miRNA and drug resistance. Li [35]
proposed a GCN-based method with neural inductive
matrix completion called NIMCGCN to cope with the prob-
lem of miRNA-disease association prediction. Long [33]
developed a framework named GCNMDA for the human
microbe-drug association prediction. Yu employed the tra-
ditional model to predict GO annotations for maize proteins
[36] and isoform[37]. In this paper, owing to these success-
ful applications of GCN on bioinformatics, we make use of
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GCN with simultaneously learning term and relationship
representations to measure gene functional similarity based
on the GO graph, which can fully capture the structural
information of GO graph.

3 METHODS

The framework of GOGCN is displayed in Fig. 1. First, to
learn the representations for terms, GOGCN designs a KGE
model which consists of an encoder and a decoder. The
encoder is made up of GCN layers that update the initialized
representations of terms and relations according to the
semantic interaction between terms. The decoder is driven
by the link prediction task which takes the output of the
encoder as input so as to perform secondary learning for the
representations of terms and relations. Then, GOGCN calcu-
lates the semantic similarity between terms by exploiting
their corresponding representations. Finally, the functional
similarity between genes ismeasured by the BMA rule.

3.1 Learn the Representations for Terms

In this paper, we express the GO graph as G ¼ ðV;R;
E;XX ;ZZÞ. V denotes the set of entities (i.e. terms). R

represents the set of relations. E represents the edge set. XX 2
RjVj�d0 denotes the initialized entity representations. ZZ 2
RjRj�d0 represents the initialized relation representations.
Inspired by COMPGCN, GOGCN takes the original direc-
tion and inverse direction of edges into account, and
extends R, i.e., R0 ¼ R [Rinv [ fTg, where T denotes the
self loop. For a triple ðh; r; tÞ, its reverse triple can be
inferred as ðt; r�1; hÞ. Then the set of the inverse relations
Rinv can be represented asRinv ¼ fr�1jr 2 Rg.

In the encoder, for fully capturing the structural informa-
tion of the GO graph, GOGCN adds a propagation weight
between GCN layers based on COMPGCN[29]. Its propaga-
tion formula is defined as:

hkþ1
i ¼ f Wk

X
ðj;rÞ2NðiÞ

Wk
�ðrÞAggrðhk

j ; h
k
rÞ

0
@

1
A (1)

whereNðiÞ is the first-order neighbors set of i, j and r repre-
sent the entity and relation connected to i, hk

j and hk
r indicate

the representations of entity j and relation r after the
ðk� 1Þ-th GCN layer respectively, h0

j and h0
r are j-th and

r-th entry of the initialized XX and ZZ respectively, Wk 2

Fig. 1. The framework of GOGCN. (a) GOGCN devises a GCN-based encoder and a decoder driven by link prediction to learn the representations for
all terms and relations. (b) The representations of terms are then used to measure the semantic similarity between terms. (c) the functional similarity
between genes can be calculated by the BMA rule.
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Rdkþ1�dkþ1 represents the propagationweight of the k-thGCN
layers, f is the activation function likeReLU ,Wk

�ðrÞ 2 Rdkþ1�dk

is the convolutional filter related to the direction of relations.
Aggr denotes the aggregation operation of neighbor terms
and relations. We choose the circular correlation operation in
HolE[38] as the aggregation operation, defined as:

Aggrðhj; hrÞ ¼ hj ? hr (2)

Since the direction of relationships between two terms
may indicate a specific semantic meaning. we adopt the
direction-specific weights in COMPGCN to define W�ðrÞ,
expressed as:

W�ðrÞ ¼
WO; r 2 R
WI; r 2 Rinv

WS; r ¼ Tðself � loopÞ

8<
: (3)

Further, the representations of relations are updated as
follows:

hkþ1
r ¼ Wk

relh
k
r (4)

where Wk
rel 2 Rdkþ1�dk indicates the relation update matrix

of k-th GCN layer and hkþ1
r represents the updated repre-

sentations of relation r after the k-th GCN layer.
In the decoder, we first take the GO graph as a knowl-

edge graph and store its information in the form of triples.
The triple, also called fact, consists of three parts: head
entity, relation, and tail entity. Then, the corresponding rep-
resentations of these triples are made use of to train the link
prediction model. The model gives higher scores for true tri-
ples and lower scores for corrupt triples and in turn updates
these representations. Finally, the model is iteratively
trained to reach the convergence state where the scores of
true and corrupt triples can be measured as accurately as
possible. The 1-n scoring strategy is applied in the training
phase, that is, for each true triple, the corresponding corrupt
triples dataset is constructed by replacing its head entity
and tail entity with other entities. In this study, we choose
the model developed by ConvE[32] as the scoring function
defined as:

’ðes; eoÞ ¼ fðvecðfð½es; rr� � wÞÞWÞeo (5)

where es 2 Rk and eo 2 Rk represent the vector representa-
tion of head entity s and tail entity o updated by (1) respec-
tively, rr 2 Rk denotes the vector representation of relation
r updated by (4), es 2 Rkwkh and rr 2 Rkwkh indicate a 2D
reshaping of es and eo in which k ¼ kwkh, � denotes 2D con-
volutional operation and w is a convolutional filter, vecð�Þ
represents vectorization that transforms a tensor into a vec-
tor. W is a linear transformation matrix which transforms
the vector obtained by convolutional neural networks into a
k-dimension space.

GOGCN chooses the binary cross entropy (BCE) loss as
loss function, given as:

L ¼ � 1

N

X
i

ððti � logðpiÞÞ þ ð1� tiÞ � logð1� piÞÞ (6)

where pi represents the score of i-th triple. ti denotes the
label of i-th triple with the value is 1 for true triples and 0
for corrupt triples.

After training, the representations of entities and relations
are updated again and the semantic similarity between enti-
ties can be estimated by exploiting the representations of enti-
ties. The above processes demonstrate GOGCN sufficiently
promotes the semantic interaction between terms, thereby
capturing the structural information of the GOgraph.

3.2 Measure Semantic Similarity Between Terms

The representations of entities (i.e. terms), can be obtained
through Section 3.1. Since the most common strategy for
measuring the similarity between vectors is cosine similar-
ity, GOGCN also leverages it to measure the semantic simi-
larity between two terms. The formula is expressed as:

ST ðt1; t2Þ ¼ et1 � et2
et1
�� �� et2

�� �� (7)

where et1 and et2 represent the vector representations of the
term t1 and t2.

3.3 Measure Functional Similarity Between Genes

In this section, we measure the functional similarity
between genes based on the BMA rule. Suppose there are
two genes GA and GB annotated with two term sets TA ¼
ftA1; tA2; . . . ; tAmg and TB ¼ ftB1; tB2; . . . ; tBng respectively.
GOGCN first estimates the similarity between terms and
genes. Taking term tA1 and gene GB as examples, the calcu-
lation formula is:

STGðtA1; TBÞ ¼ max
14i4n

ðST ðtA1; tBiÞÞ (8)

Subsequently, the functional similarity between gene GA

and gene GB is defined as:

SGðGA;GBÞ

¼
P

14i4m STGðtAi; TBÞ þ
P

14j4n STGðtBj; TAÞ
mþ n

(9)

4 MATERIALS

4.1 GO and GO Annotations

In this research, the GO graph is reconstituted as triples for
training the KGE model to obtain the final vector represen-
tations of terms and relations. GO files can be downloaded
from the Gene Ontology database (http://geneontology.
org/docs/download-ontology/). The version exploited by
GOGCN is dated September 2020 which contains 28,922 BP
terms, 4,193 CC terms, and 11,157 MF terms. The number of
terms, relations, and triples in the GO graph are displayed
in Table 1. Given that the measurement of gene functional
similarity only needs to consider ’is a’ and ’part of’ relations,
GOGCN also follows this rule.

GO annotations are composed of the annotation informa-
tion of genes, which is essential for estimating the functional
similarity of genes. Each GO annotation is assigned together
with an evidence code (EC) that refers to the process used to
assign the specific GO term to a given gene [39]. In this
study, we refer to the annotation set that contains annota-
tions created by the Inferred from Electronic Annotation
(IEA) as IEA+, and the one that does not contain IEA anno-
tations is called IEA-. We download the GO annotation files
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for Homo sapiens (dated October 2020) and Saccharomyces
cerevisiae (dated October 2020) from the Gene Ontology
database (http://geneontology.org/docs/download-go-
annotations/).

4.2 Protein-Protein Interaction Dataset

We rebuild the Homo sapiens datasets and Saccharomyces
cerevisiae datasets mainly collected from WIS [17] and
Zhang [19] respectively. The new dataset contains 1,251 pos-
itive Protein-Protein Interactions (PPIs) for H.sapiens and
1,113 positive PPIs for S.cerevisiae respectively. In the
meantime, the corresponding negative PPIs of H.sapiens
and S.cerevisiae with the same number of positive ones are
created randomly which are absent from the dataset of all
possible positive PPIs.

4.3 Gene Expression Dataset for Saccharomyces
Cerevisiae

Since the genes involved in the same biological process or
function have higher expression values, the correlation
between gene expression data and functional similarity of
genes can be used as an effective evaluation criterion. In
this paper, GOGCN makes use of the gene expression data-
set downloaded from Jain [40] which contains 6,000 differ-
ent gene pairs and their corresponding expression value,
including 2,000 pairs for BP, CC, and MF ontology
respectively.

4.4 CESSM Dataset for Correlation With Pfam
Similarity

The Collaborative Evaluation of GO-based Semantic Simi-
larity Measures (CESSM) is an online tool for the evaluation
of GO-based SSMs against sequence, and protein family
(Pfam) similarities[41]. However, its dataset is an old ver-
sion that was dated August 2008. The GO graph and GO
annotation file have changed simultaneously. To this end,
we update the dataset by removing the proteins not existing
in the GO annotation file, then obtain 10,774 pairs of pro-
teins from various species. We then employ these protein
pairs to find correlation against the Pfam (download from
the UniPort database) similarity because terms in the GO
graph have the manifest ability to distinguish the functional
aspect of gene [42].

4.5 Biological Pathways Dataset

In this study, we collect two kinds of biological pathways for
two experiments: Functional classification of genes in a bio-
logical pathway and Set-discriminating power of different
KEGG pathways. First, genes in the same reaction stage (i.e.,
have the same EC number) in a biological pathway tend to
exhibit similar functions[11]. Hence, to explore the

functional classification of genes, we extract a yeast pathway
that contains 10 genes from the SGD database to estimate the
classification performance based on MF ontology. Second,
because a biological pathway shows the accomplishment
processes of a specific biological process in a cell, proteins
involved in a pathway are more likely to interact among
themselves than the proteins belonging to different path-
ways [42]. To this end, we collect five yeast KEGG pathways
which all contain the number of genes between 11 to 14 for
measuring the discriminating power based on CC ontology.

5 RESULTS

In this section, we introduce the experimental setup for
learning the representations of terms and discuss the experi-
mental results in detail. Before discussing the experimental
results, we briefly introduce baselines and evaluation met-
rics. Subsequently, we evaluate GOGCN in several convinc-
ing and pervasive experiments: Protein-Protein Interaction
of S. cerevisiae and H. sapiens, Pearson’s correlation coeffi-
cient analysis based on gene expression data, Correlation
with Pfam, Functional classification of genes in a biological
pathway, and Set-discriminating power of KEGG Pathways.
The details are described as follows.

5.1 Experimental Setup

The main hyperparameter setting of GOGCN when learn-
ing the representations of terms are listed in Table 2. We
adopt a single layer GCN to train the model for learning the
representations of terms and relations. In the encoder, the
input embedding size (i.e., initial embedding size) and out-
put embedding size (i.e., GCN embedding size) are set as
100 and 200 respectively. And the dropout through GCN
layers is equal to 0.1. In the decoder, a dropout with a rate
of 0.3 is assigned to feature maps and the hidden layer. Dur-
ing training the model, we use Adam optimizer with a
learning rate of 0.001 to update model parameters. All
model parameters are initialized by Xavier initialization
[43]. The experimental code is implemented by Pytorch.

5.2 Baselines

In this section, we briefly introduce the baseline methods as
follows.

� Resnik [8]: the most representative pair-wise method
that measures the IC of terms based on specific
corpora.

TABLE 1
The Number of Terms, Relations, and Triples in the GO Graph

Entities (Terms) Total Entities Relations Triples

BP 28,922 44,272 2 81,952
CC 4,193
MF 11,157

TABLE 2
The Main Hyperparameter Setting of

GOGCN

Hyperparameters Value

optimizer Adam
learning rate 0.001
GCN layers 1
initial embedding size 100
GCN embedding size 200
GCN dropout 0.1
epoch 50
batch size 128
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� simUI [15]: a classic group-wise method that uses the
ratio of the number of the intersection and union set
annotating two genes to measure gene functional
similarity.

� simGIC [44]: an extension of simUI where the ratio of
the number of the intersection and union set is con-
verted to the overlapping IC value of the intersection
and union set.

� Wang [11]: an innovative pair-wise method that
assigns a weight value to the relationship connecting
two terms.

� SORA [7]: an innovative group-wise method that
fully incorporates the structure of GO into measur-
ing gene functional similarity.

� VSM: a basic vector-based method that uses a vector
to represent the annotating term set for measuring
gene functional similarity based on vectors.

5.3 Evaluation Metrics

In this study, there are mainly four group experiments
which are Protein-Protein Interaction of S. cerevisiae and H.
sapiens, Pearson’s correlation coefficient analysis based on
gene expression data, Correlation with Pfam similarity.
Four metrics are employed to evaluate the performance of
the gene functional calculation methods.

The first one is area under curve (AUC) values used in the
Protein-Protein Interaction experiment. In this experiment,
we construct the dataset containing positive Protein-Protein
Interactions (PPIs) for H.sapiens and S.cerevisiae respec-
tively. In the meantime, the corresponding negative PPIs of
H.sapiens and S.cerevisiae are created randomly (see Sec-
tion 4.2). Lastly, we calculate all the functional similarity for
both positive and negative PPIs. Functional similarity values
of all gene pairs are varied from 0 to 1. To draw the receiver
operating characteristic curves (ROC) plots, gene pairs of
which functional similarity values are greater than the spe-
cific threshold are treated as positive samples, while those
gene pairs which are smaller than the specific threshold are
regarded as negative samples. Thereafter, four indicators
which are the true positive, true negative, false positive, and
false negative values are obtained. Further, true positive rate
(TPR) and false positive rate (FPR) can be computed.We var-
ied the threshold from 0 to 1 and ROC curves can also be
plotted based on TPR and FPR values [45]. According to
ROC curves, we can get the AUC values. In this study, we
compare the performance of the GOGCN and other state-of-
the-art methods based on the AUC values. Generally, the
higher the AUC value is, the better the performance of the
functional calculationmethod is.

The second is Pearson’s correlation coefficient analysis
based on gene expression data. For this metric, we first mea-
sure the expression similarity for gene pairs. Then the func-
tional similarity for these gene pairs are also computed with
functional similarity calculation methods. Lastly, we mea-
sure the Pearson correlation coefficient based on the expres-
sion similarity and functional similarity for gene pairs. The
higher the Pearson correlation coefficient value is, the better
the performance of the functional calculation method is.

The third one is the Correlation with Pfam similarity.
Similar to Pearson’s correlation coefficient analysis, we first

need to compute the Pfam family similarity between gene
pairs [41]. Then, the functional similarity for these gene
pairs are also measured by functional similarity calculation
methods. Lastly, the correlation of functional similarity
with Pfam similarity can be measured by Pearson’s correla-
tion coefficient. The higher the Pearson correlation coeffi-
cient value is, the better the performance of the functional
calculation method is.

The last one is the DP (discriminating power), which we
take as the evaluation metric [42]. Specifically, let P ¼
fP1; P2; :::; Png and SG as the KEGG pathways set and an
approach for measuring gene functional similarity respec-
tively. For a KEGG pathway Pk, fgk1 ; gk2 ; :::; gkpg denotes the
gene set involved in this pathway. For calculating the DP
value of Pk, the intra set average similarity is computed
firstly, given as:

Intra simðPkÞ ¼
Pkp

i¼1

Pkp
j¼1 SGðgki ; gkjÞ
k2p

(10)

Next, let fgl1 ; gl2 ; :::; glqg represent the gene set contained
by KEGG pathway Pl, the inter set average similarity
between Pk and Pl is then defined as:

Inter simðPk; PlÞ ¼
Pkp

i¼1

Plq
j¼1 SGðgki ; gljÞ
kp � lq

(11)

Finally, For the KEGG pathways set P , the DP value of
pathway Pk can be calculated as:

DP ðPkÞ ¼ ðn� 1Þ � Intra simðPkÞPn
i¼1;i 6¼k Inter simðPk; PiÞ (12)

From the above calculation process, the DP value of a
KEGG pathway quantifies the ability of an approach to dis-
criminate the genes involved in the current pathway from
the genes contained by other pathways. Thus, the higher
the DP value, the better the performance of the correspond-
ing approach.

5.4 Protein-Protein Interaction of S. Cerevisiae and
H. Sapiens

In this section, we conduct the PPI experiment to evaluate
the effectiveness of GOGCN. Here, we choose four main-
stream group-wise approaches (simUI[15], simGIC[44], and
SORA[7]) and two classical pair-wise approaches (Resnik
[8], and Wang[11]) as the baselines to evaluate the experi-
mental results. The AUC values of these approaches on S.
cerevisiae datasets are displayed in Table 3. GOGCN gets
the best result on BP_IEA+, BP_IEA-, CC_IEA+, MF_IEA+,
and MF_IEA- except for CC_IEA-. For example, the AUC
value of GOGCN is 0.8457 on the CC_IEA+ experiment.
From Table 3, GOGCN shows great advantages on BP and
MF ontologies. For example, the AUC value of GOGCN on
the BP_IEA+ experiment is 0.8968 followed by 0.8784 calcu-
lated by simGIC. Further, even if the AUC value of GOGCN
on the CC_IEA- experiment is inferior to simGIC and
Wang, the gap between them is not significant.

Table 4 depicts the AUC values of functional similarity
approaches on H. sapiens datasets. GOGCN gets the best
results on each experiment compared with the other six
baselines. From Table 4, although Wang and simGIC show
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extraordinary performance, GOGCN is still in the lead. For
instance, in comparison with Wang and simGIC, GOGCN
increases by 1.30% and 6.07% respectively on CC_IEA-
experiment. Besides, GOGCN is 1.89% and 5.88% higher
than Wang and simGIC on the MF_IEA+ experiment
respectively.

In brief, GOGCN achieves the best performance on PPI
experiments for both S. cerevisiae and H. sapiens datasets.
In addition, we also summed up two points from the PPI
experiment. On one hand, regardless of S. cerevisiae data-
sets or H. sapiens datasets, the experimental results show
that the performances on BP, CC, and MF experiments
decrease in turn. On the other hand, although GOGCN has
achieved excellent results, the performance of group-wise
approaches is better than pair-wise approaches in some cir-
cumstances, which is consistent with SORA[7].

5.5 Pearson’s Correlation Coefficient Analysis
Based on Gene Expression Data

We calculate the Pearson’s correlation coefficient between
gene functional similarity and gene expression data. The
results are depicted in Table 5. In general, the higher the
Pearson’s correlation coefficient, the better the approach [46].

As Table 5 shows, most approaches demonstrate a higher
correlation on CC ontology. We can find that GOGCN
achieves the highest correlation on BP_IEA+, CC_IEA+,
CC_IEA-, and MF_IEA- experiments. Additionally, the
achievements of GOGCN far surpass other baseline
approaches on the four experiments. A convincing case in
point is that GOGCN scores 0.4500 on CC_IEA- experiment
which is 0.1524 higher than Resnik. Furthermore, the results
show the performances of GOGCN and simGIC are neck
and neck on the BP_IEA- experiment. Apart from the afore-
mentioned, for the MF_IEA+ experiment, the achievement
of GOGCN is only inferior to SORA and simUI. In sum-
mary, GOGCN successfully demonstrates the highest corre-
lation with the gene expression dataset overall, which
reflects its effectiveness.

5.6 Correlation With Pfam Similarity

A Pfam generally denotes the evolutionary process of pro-
teins, that is, proteins sharing with same Pfams show simi-
lar functions. Following CESSM[41], the Pfam similarity of
two proteins is calculated by the Jaccard index which is
defined as the ratio of the number of protein families they
share to the total number of protein families they belong to.

Subsequently, the correlation of functional similarity with
Pfam can be measured by Pearson’s correlation coefficient.

As Table 6 shows, we divide the protein pairs into 1,000,
2,000, and 5,000 groups and then calculate the Pearson’s cor-
relation coefficient with their corresponding Pfam similar-
ity. Overall performance of GOGCN, simGIC, and SORA
are better than the rest approaches. Particularly, The corre-
lation of them on BP (1,000 groups), CC (1,000 groups), and
MF (1,000 groups) are all more than 0.8. Meanwhile, it may
be noted that the correlations decrease in turn when divid-
ing protein pairs into 1,000, 2,000, and 5000 groups, which
shows that Pearson’s correlation coefficient is negatively
correlated with the number of groups.

Further, GOGCN performs best in eight metrics. By way
of illustration, GOGCN has an overwhelming advantage in
CC (2,000 groups) where GOGCN scores 0.842 and is 0.300
more than VSM which gets the second best result. In brief,
GOGCN shows the highest correlation with Pfam and there-
fore is more superior compared with the state-of-the-art
baselines.

5.7 Experimental Analysis of Biological Pathways

5.7.1 Functional Classification of Genes in a Biological

Pathway

As is shown in Table 7, we take the ’L-tyrosine degradation
III’ pathway as an example. There are 10 genes involved in
three biological processes, corresponding to three EC num-
bers. The functional similarity between these genes are cal-
culated by GOGCN and three baseline methods which are
Resnik [8], simGIC[44], and simUI[15].

From Fig. 2, GOGCN, Resnik, simUI, and simGIC all
divide the 10 genes into their corresponding category. From
the perspective of GOGCN, the functional similarity

TABLE 3
The AUC Values of Functional Similarity Approaches for S. Cer-

evisiae Datasets

Approaches BP_IEA+ BP_IEA- CC_IEA+ CC_IEA- MF_IEA+ MF_IEA-

simUI[15] 0.8515 0.8376 0.8002 0.7809 0.7600 0.7711
simGIC[44] 0.8784 0.8680 0.8262 0.8145 0.7843 0.7940
VSM 0.8545 0.8394 0.8010 0.7824 0.7615 0.7713
SORA[7] 0.8762 0.8653 0.8140 0.8031 0.7899 0.7985
Resnik[8] 0.7926 0.7977 0.7852 0.7762 0.7506 0.7611
Wang[11] 0.8718 0.8676 0.8416 0.8138 0.7699 0.8000
GOGCN 0.8968 0.8837 0.8457 0.8090 0.8132 0.8312

The best results are in bold.

TABLE 4
The AUC Values of Functional Similarity Approaches for H

Approaches BP_IEA+ BP_IEA- CC_IEA+ CC_IEA- MF_IEA+ MF_IEA-

simUI[15] 0.8993 0.8922 0.7614 0.7605 0.6520 0.6551
simGIC[44] 0.9227 0.9154 0.7955 0.7937 0.7399 0.7579
VSM 0.9081 0.8986 0.7648 0.7641 0.6428 0.6519
SORA[7] 0.9147 0.9096 0.7676 0.7722 0.7014 0.7040
Resnik[8] 0.8550 0.8604 0.7488 0.7536 0.7435 0.7615
Wang[11] 0.9247 0.9195 0.8344 0.8311 0.7689 0.7545
GOGCN 0.9323 0.9228 0.8378 0.8419 0.7834 0.7653

The best results are in bold sapiens datasets.

TABLE 5
The Pearson’s Correlation Coefficient Between the Results of
Functional Similarity Approaches and Gene Expression Data

Approaches BP_IEA+ BP_IEA- CC_IEA+ CC_IEA- MF_IEA+ MF_IEA-

simUI[15] 0.3449 0.3542 0.3872 0.3465 0.3575 0.3069
simGIC[44] 0.3892 0.3917 0.3583 0.3450 0.3259 0.3208
VSM 0.2898 0.3017 0.4077 0.3611 0.3280 0.2861
SORA[7] 0.3128 0.3535 0.4017 0.3808 0.3622 0.3377
Resnik[8] 0.3111 0.2690 0.2922 0.2976 0.3023 0.3127
Wang[11] 0.3086 0.2939 0.4221 0.4322 0.3048 0.3084
GOGCN 0.4051 0.3864 0.4329 0.4500 0.3303 0.3529

The best results are in bold.
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between genes involved in the same biological process is
much higher than the functional similarity between genes
belonging to different EC numbers. Besides, the lowest simi-
larity value between genes belonging to the same EC num-
bers is 0.63. What’s more, it is reasonable to a large extent
that the functional similarity between genes involved in dif-
ferent biological processes calculated by GOGCN is in the
range of 0.2 to 0.4. For method Resnik, although it can also
classify these genes into their corresponding categories,
there are some problems with the functional similarity in
some cases. For example, the functional similarity between
gene ’PDC1’ and ’PDC5’ is 0.79 instead of 1.00 computed by
Resnik, though, gene ’PDC1’ and ’PDC5’ are jointly anno-
tated with GO term ’GO:0004737’, ’GO:0047433’, and
’GO:0016831’. Meanwhile, the functional similarity between
gene ’ADH1’ and gene ’ADH2’, ’ADH3’, ’ADH4’, and
’ADH5’ are all only 0.43, but they jointly participate in the
same biological process. For simUI, there are some unsatis-
factory gene functional similarities. As a case in point, the
functional similarity between gene ’ADH1’ and gene
’ADH2’, ’ADH3’, ’ADH4’, and ’ADH5’ is 0.54 which is
lower than 0.63 calculated by GOGCN. From the results of
simGIC, the functional similarity between genes involved in
different biological processes are all 0, which is irrational to
some extent. In a nutshell, GOGCN achieves the best results
in the experiment of Functional classification of genes in a
biological pathway.

5.7.2 Set-Discriminating Power of KEGG Pathways

The information of the selected KEGG pathways is listed in
Table 8, and Table 9 depicts the discriminating power of

GOGCN and three comparison approaches (Wang[11],
VSM, and Resnik[8]) based on CC ontology.

Overall, the DP value of GOGCN is higher than other
approaches for 4 of 5 KEGG pathways, thereby showing the
better discriminating power of GOGCN. Further, although
the discriminating power of GOGCN for the ’sce00514’
pathway is inferior to Resnik, GOGCN yields an excellent
performance than the rest two approaches.

6 ABLATION STUDY

We conduct several PPI experiments on Homo sapiens data-
sets to investigate the effectiveness of the components of our
model. The impact of different types of aggregation opera-
tion, the use of relationships, and the encoder and decoder
on model performance are explored in the following
sections.

6.1 Ablation Study on Different Types of
Aggregation Operation

To testify the effectiveness of the circular correlation opera-
tion in aggregating neighbor terms and relations, we intro-
duce two other types of aggregation operation to compare
with the circular correlation operation, which are ’add’ and
’mult’ denoting add and multiply respectively, given as:

Aggrðhj; hrÞadd ¼ hj þ hr (13)

Aggrðhj; hrÞmult ¼ hj � hr (14)

The circular correlation operation (corr) in HoLE [38] are
given in (2).

As is shown in Fig. 3, the overall results indicate that
adopting the circular correlation operation can achieve the
best performance on 5 sub-tasks except for MF_IEA-, while
using the other simple aggregation operations leads to bad
performance. Specifically, although adopting the ’add’
operation gets the best result on MF_IEA-, employing the
circular correlation operation outperform it on the other 5
sub-tasks, which shows adopting more complex aggrega-
tion operations can benefit our model.

6.2 Ablation Study on the Use of Relationships

We train the encoder-decoder model to learn meaningful
representations of both terms and relationships, then use
the learned term representations to measure gene functional
similarity. Note that although we only use the learned term
representations to measure gene functional similarity after

TABLE 6
The Pearson’s Correlation Coefficient Between the Results of Functional Similarity Approaches and Pfam

Approaches BP CC MF

1000 2000 5000 1000 2000 5000 1000 2000 5000

simUI[15] 0.851 0.753 0.596 0.877 0.807 0.669 0.881 0.808 0.665
simGIC[44] 0.849 0.758 0.606 0.854 0.780 0.646 0.893 0.824 0.683
VSM 0.860 0.762 0.599 0.884 0.812 0.672 0.846 0.765 0.618
SORA[7] 0.876 0.788 0.631 0.875 0.800 0.658 0.863 0.786 0.641
Resnik[8] 0.695 0.576 0.414 0.725 0.631 0.474 0.727 0.623 0.467
Wang[11] 0.836 0.733 0.564 0.861 0.774 0.610 0.859 0.782 0.626
GOGCN 0.887 0.794 0.641 0.898 0.842 0.706 0.896 0.829 0.682

The best results are in bold.

TABLE 7
Function of Genes in ’L-Tyrosine Degradation III’ Pathway

Class ID EC number Gene Name

1 1.1.1.1 ADH1
1.1.1.1 ADH2
1.1.1.1 ADH3
1.1.1.1 ADH4
1.1.1.1 ADH5

2 2.6.1- ARO8
2.6.1- ARO9

3 4.1.1.80 PDC1
4.1.1.80 PDC5
4.1.1.80 PDC6
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training our model, the relation representations also con-
tribute to the learning process of term representations. To
explore the validity of incorporating relationship ’is a’ and
’part of’ into our model, we introduce two variants of
GOGCN as follows: 1) noRelation: remove representation
learning of relationships and only use the information of
neighbor terms to update the representation of the central
term. 2) oneRelation: treat relationship ’is a’ and ’part of’ as
equal and obtain only one relationship in our model.

As Fig. 4 shows, oneRelation achieves better results than
noRelation on 4 out of 6 sub-tasks, indicating incorporating
representation learning of relationships into our model can
benefit to representation learning of terms. Moreover,
GOGCN outperforms noRelation on all sub-tasks and per-
forms better than oneRelation on 5 sub-tasks, which demon-
strates treating ’is a’ and ’part of’ differently can learn more

representative terms representations and further improve
the performance of the model.

6.3 Ablation Study on the Encoder and Decoder

Considering different neighbor terms and relationships may
contribute to the central term differently, we introduce an
attention-based model to compare with GOGCN. In the
attention model, the propagation formula of representation
learning of terms is defined as:

hkþ1
i ¼ f Wk

X
ðj;rÞ2NðiÞ

Wk
�ðrÞa

k
ijrAggrðhk

j ; h
k
rÞ

0
@

1
A (15)

where ak
ijr is calculated as:

ak
ijr ¼

expðAggrðhk
j ; h

k
rÞÞP

ðm;nÞ2NðiÞ expðAggrðhk
m; h

k
nÞÞ

(16)

Fig. 2. Functional classification of genes in ’L-tyrosine degradation III’ pathway based on MF ontology using method GOGCN, Resnik, simUI, and
simGIC.

TABLE 8
The Number of Genes in Five Yeast KEGG Pathways

Pathway
ID

Pathway Name Number of
Genes

sce00053 Ascorbate and aldarate metabolism 11
sce00290 Valine, leucine and isoleucine

biosynthesis
12

sce00350 Tyrosine metabolism 13
sce00514 Other types of O-glycan biosynthesis 14
sce00790 Folate biosynthesis 11

TABLE 9
The Discriminating Power of Different Approaches for the
Selected Five KEGG Pathways Based on CC Ontology

Approaches sce00053 sce00290 sce00350 sce00514 sce00790

VSM 1.0439 1.2285 1.1703 1.5872 1.1457
Resnik[8] 0.9087 1.2750 0.9901 2.3778 1.1812
Wang[11] 1.0003 1.2292 1.1840 1.6300 1.1705
GOGCN 1.0589 1.2886 1.2192 1.7684 1.1877

The best results are in bold.
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Additionally, we first employ the encoder to fuse the
information of neighbor terms and relationships, then use
the fused term and relation representations as the input of
the decoder model to perform a secondary update. To vali-
date the reasonability of our encoder model, we only use
the decoder model ConvE to train the model for learning
term and relation representations.

As illustrated in Fig. 5, GOGCN outperforms the atten-
tion-based model on all sub-tasks, manifesting that treating
the neighbor terms differently results in worse performance.
The reason for this is that the representations of relation-
ships may already provide underlying importance for each
neighbor term when fusing the aggregated information of
neighbor terms and relationships. In addition, GOGCN
achieves better than ConvE on 5 sub-tasks. Especially,
GOGCN significantly outperforms ConvE on BP_IEA+,
BP_IEA-, CC_IEA+, and CC_IEA-, which strongly demon-
strates the reasonability of our encoder model, and further
indicates that the information of neighbor terms and rela-
tionships fused by our encoder model is valuable.

7 DISCUSSION

In this manuscript, a novel approach called GOGCN for
measuring gene functional similarity based on GCN is pro-
posed, which is the first attempt to model the GO graph by
GCN. The experimental results strongly validate the inno-
vation and effectiveness of GOGCN. In the meantime, sev-
eral questions deserved discussion in this section.

1) Why the performance of GOGCN is better than other
approaches?

For one thing, in the encoder, GOGCN exploits
GCN to aggregate the vector representations of
neighbor terms and connected relations for updating
the representation of central term where the weight
parameter based on the direction of the relation is
considered as the convolution kernel to implement
the convolution operation on the GO graph. In this
process, semantic interactions between terms are
realized through relations, which largely capture the
structural information of the GO graph. For another,
in the decoder, GOGCN takes all the real triples
existing in the GO graph as the training set and con-
structs negative samples by destroying the head
terms or tail terms during the training process so as
to perform secondary learning on the representa-
tions of terms and relations. Therefore, after the joint
training of the encoder and decoder, GOGCN has
fully modeled all the terms and the relation between
them, which is pivotal for measuring the semantic
similarity between terms.

2) Why GOGCN applies the technique of KGE based
on GCN into the measurement of gene functional
similarity?

GCNs have recently been shown to be quite suc-
cessful in modeling graph-structured data [29].
Meanwhile, numerous researches indicated that
employing GCN to model biological knowledge
graphs is effective. What’s more, the GO graph is a
special knowledge graph where terms and relations
can be seen as the entities and relations of knowledge

Fig. 3. Ablation study on different types of aggregation operation.

Fig. 4. Ablation study on the use of relationships.

Fig. 5. Ablation study on the encoder and decoder.
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graphs respectively. Thereafter, the representations
of terms can be learned for purpose of the measure-
ment of semantic similarity between terms.

3) WhyGOGCN learns the representations of relations in
encoder but does not use the learned representations
of relations tomeasure gene functional similarity?

For one thing, in order to converge as quickly as
possible when training the model, it is indispensable
for the decoder to learn the representations of relations
in the encoder. Simultaneously, learning the represen-
tations of relations can facilitate semantic interaction
between terms, which makes full use of the structural
information of the GO graph to a certain extent. For
another, given the framework of GCN, the measure-
ment of semantic similarity between terms is merely
based on the representations of terms.

8 CONCLUSION

In this study, we put forward a novel pair-wise approach uti-
lizing GCN to model the GO graph for measuring gene func-
tional similarity. Subsequently, we conduct four experiments
so as to estimate the performance of GOGCN. In addition,
the ablation study is conducted to explore the validity of the
components of GOGCN. In comparison with mainstream
approaches, GOGCNhas the following innovations.

On the whole, GOGCN designs a GCN-based framework
to learn the vector representations of the GO terms for mea-
suring gene functional similarity. What’s more, because GO
terms interact with each other through relations, GOGCN can
fully collect the structural information of theGOgraph,which
effectively captures the specificity of terms and relations.

In terms of details, GOGCN transforms themeasurement of
semantic similarity between terms into the similarity between
their corresponding vector representations. On one hand, com-
pared with approaches that need to measure the IC of terms,
GOGCN can skip this sophisticated stage. On the other hand,
it is convenient to measure the similarity between vectors,
thereby there is no need to design a complicated semantic simi-
larity strategy. As a consequence, GOGCN is advantageous in
measuring semantic similarity between terms.

In conclusion, GOGCN is the first attempt that makes use
of GCN to model the GO graph for measuring gene func-
tional similarity. Aside from this, the corresponding experi-
mental results demonstrate the effectiveness and innovation
of GOGCN. In the future, we will further improve GOGCN
in detail and apply GOGCN to some other biological
applications.
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