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Abstract 

Background:  Recently, with the foundation and development of gene ontology (GO) 
resources, numerous works have been proposed to compute functional similarity of 
genes and achieved series of successes in some research fields. Focusing on the calcu-
lation of the information content (IC) of terms is the main idea of these methods, which 
is essential for measuring functional similarity of genes. However, most approaches 
have some deficiencies, especially when measuring the IC of both GO terms and their 
corresponding annotated term sets. To this end, measuring functional similarity of 
genes accurately is still challenging.

Results:  In this article, we proposed a novel gene functional similarity calculation 
method, which especially encapsulates the specificity of terms and edges (STE). The 
proposed method mainly contains three steps. Firstly, a novel computing model is put 
forward to compute the IC of terms. This model has the ability to exploit the specific 
structural information of GO terms. Secondly, the IC of term sets are computed by 
capturing the genetic structure between the terms contained in the set. Lastly, we 
measure the gene functional similarity according to the IC overlap ratio of the cor-
responding annotated genes sets. The proposed method accurately measures the IC 
of not only GO terms but also the annotated term sets by leveraging the specificity of 
edges in the GO graph.

Conclusions:  We conduct experiments on gene functional classification in biological 
pathways, gene expression datasets, and protein-protein interaction datasets. Exten-
sive experimental results show the better performances of our proposed STE against 
several baseline methods.

Keywords:  Gene ontology, Information content, Specificity of terms and edges, Gene 
functional similarity
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Background
Since Gene Ontology (GO) [1, 2] was first founded in 1998, it has been an important 
resource to support modern biological research. The GO knowledge base contains a 
controlled vocabulary of terms, which has three different orthogonal ontologies named 
biological process (BP), molecular function (MF), and cellular component (CC) . In each 
ontology, terms are employed to describe the function of genes and the relationships 
which have specific meanings are used to connect two terms. There are many relation-
ships in the GO database and we only consider two of them: is_a and part_of.

GO exists in the form of a directed acyclic graph (DAG) and has two important char-
acteristics. One is that terms with lower hierarchy generally show more specific mean-
ings while terms with higher hierarchy have more generic meanings. Traditionally, the 
specific and generic meanings of terms are measured by the IC values, which could rep-
resent their specificity. The other is that the edges in different levels also have different 
specificity because of the terms that they connect.

The functions of a gene could be described by go terms and thus we suggest that this 
gene is annotated by the terms. The GO annotations (GOA) [3–5] database is specifi-
cally used to describe genes and their annotation terms. Since GO has three branches, 
genes can also be annotated from BP, CC, and MF aspects. Comparing the functional 
similarity between genes has many significant applications [6–10], such as protein inter-
action prediction, gene clustering, and disease gene identification.

In the past decades, various kinds of methods have already been developed for study-
ing gene functional similarity. The most important concept in functional similarity com-
parison of genes domain is IC, which could measure the specificity of a GO term. So 
far, there are two types of IC values computing categories: corpus-based [11–17] and 
structured-based [18–21].

For a term t, its IC value calculated by corpus-based approaches shows as follow:

where p(t) denotes the probability of both term t and its descendants appearing in the 
corpus. Method Resnik [11], Jiang and Conrath [12], and Lin [13] are all based on this 
definition. Equation  1 strongly demonstrates that the IC value of a given GO term is 
mainly attributed to the number of genes or proteins it annotates in the corpus. There-
fore, the IC value of terms may vary according to the corpus. On the other hand, the 
annotation information in a corpus is updating over time, which also has an effect on the 
IC values of terms [22].

To overcome this drawback, researcher David Sánchez [18] put forward another IC 
computing model based on the GO structure. For a given GO term t, its IC value can be 
expressed as:

where max_leaves means the amount of leaf terms. subsumers(t) is the ancestor set of 
term t. Additionally, the terms in leaves(t) are belonged to the descendants of term t that 
are also belonged to leaves. From the equation, we can find that this model exploits the 

(1)ICcorpus(t) = − log(p(t))

(2)ICstructure(t) = − log

|leaves(t)|
|subsumers(t)|

+ 1

max_leaves + 1



Page 3 of 14Tian et al. BMC Bioinformatics  2022, 23(Suppl 1):47	

specific genetic information of term t. The information contains the leaves of ontology, 
the number of their descendants and ancestors. Later, method SORA [19] and WIS [20] 
make an improvement based on this model, and achieve better performances.

Based on the IC values of terms, researchers have developed numerous gene functional 
similarity methods, which have two categories: pair-wise strategies [11–13, 23] and group-
wise strategies [19, 20, 24–28].

For pair-wise strategy methods, they measure gene functional similarity mainly uti-
lizing two steps: the first one focusing on computing the semantic similarity between 
annotated terms and the second one is measuring functional similarity with respect to 
the semantic similarity in the first step. The best matches average rule is commonly used 
in the second step. For group-wise approaches, they measure the gene functional simi-
larity from the annotation set perspective. Here we select some typical computing mod-
els for a brief review. A detailed review is beyond the scope of this paper and has already 
been presented by Catia Pesquita [29].

Method Resnik [11] is a pair-wise strategy approach. For two given term t1 and t2 , the 
semantic similarity between them can be expressed as:

where LCA(t1, t2) means the lowest common ancestor for term t1 and t2 . Then it calcu-
lates gene functional similarity leveraging the BMA rule. The procedure for some other 
methods like Wang [23], Jiang and Conrath [12], and Lin [13] are similar to method 
Resnik.

Method simUI [26] is a group-wise method, which is proposed by Gentlman. Suppose 
there are two genes G1 and G2 , the formula of this model can be expressed as:

where SG1 and SG2 represent the annotation term set for G1 and G2 respectively. Followed 
Gentlman, some other models such as SimGIC [27], SORA [19] and WIS [20] are also 
proposed. All of these approaches pay much attention to compute the IC of annotated 
term sets accurately and effectively. For example, simGIC sums up the IC value of each 
term, while SORA puts forward the concept of inherited semantics to avoid computing 
the overlap IC of terms in annotation sets. Method WIS first assigns a weighted value to 
the relationships of GO structure and then designs a rule to compute the inherited IC 
values of GO terms.

Based on the idea of vector representation, some other approaches [24, 25, 30] are pro-
posed. These methods employ the one-hot coding to deal with the annotation terms. 
Terms in the annotation term set will be represented in a vector of which dimension 
indicates the total amount of GO terms. Each dimension denoted by a binary digit. Sup-
pose there are two genes G1 and G2 , their annotation term vectors are v1 and v2 , the func-
tional similarity between G1 and G2 based on basic vector space model (VSM) can be 
expressed as:

(3)SimResnik(t1, t2) = IC(LCA(t1, t2))

(4)simUI(G1,G2) =

∣

∣SG1 ∩ SG2

∣

∣

∣

∣SG1 ∪ SG2

∣

∣

(5)SimVSM(G1,G2) =
υ1 · υ2

|υ1||υ2|
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For group-wise approaches, they do not make the best use of the GO structure, which 
may cause the calculation of IC not accurately. For example, method GIC does not take 
the number of ancestors of terms into consideration on the IC values calculation. VSM 
neglects the relationship between GO terms.

To overcome the drawbacks, we put forward a novel gene functional similarity calcu-
lation method, which especially encapsulates the Specificity of Terms and Edges (STE). 
STE mainly has two models: the first one calculates the IC value of terms and another 
one is designed for computing the weighted value of edges. Their detailed description 
will be shown in “Methods” section.

Results
In this section, the experimental results on various datasets are presented. Before that, 
we first introduce the experimental data.

Datasets

The GO data is downloaded from the online resource website. In this version, the term 
number of BP, CC, and MF are 29,380, 4,181, and 11,113 respectively. Besides, the 
Gene Ontology annotation for H. sapiens and Saccharomyces cerevisiae data are also 
downloaded from the gene ontology resource website. In this study, we divide anno-
tation types into two categories: IEA+, and IEA-, which means that the annotation 
term sets of genes contain the Inferred electronic-assigned (IEA) terms or not. More-
over, six annotation combinations are presented as MF_IEA+, MF_IEA-, CC_IEA+, 
CC_IEA-,BP_IEA+,BP_IEA-.

It is an important and popular validation strategy for gene functional similarity meth-
ods to classify the genes based on molecular function. In this study, we employ the 
yeast pathway data in Saccharomyces genome database (SGD) to make an analysis for 
the functional classification of genes based on the gene functional similarity calculation 
results.

For protein-protein interaction experiments, we download the data from the previous 
approaches [20, 23]. Besides, we remove the obsoleted data and rebuild a new experi-
mental dataset. Negative PPIs for human and yeast are randomly generated based on the 
annotation of genes on three ontologies. What’s more, the number of negative PPIs and 
positive PPIs are the same.

In the end, gene expression data of Saccharomyces cerevisiae is from Jain and Davis 
[31]. In this dataset, there are a total of 11,966 pairs of cerevisiae gene when we remove 
some obsoleted data. In the end, there are a total of 4,211, 3,888, and 3,867 gene pairs for 
CC, BP, and MF aspects respectively.

The analysis for the distribution of IC

Measuring the IC of GO terms reasonably is the foundation for accurately calculating 
the gene functional similarity. Therefore, we firstly investigate the distribution of the IC 
of terms on three sub-ontologies with three methods which are Resnik, WIS, STE. The 
detailed results are shown in Fig. 1. According to Eq. 6, terms with higher levels tend to 
have smaller IC values, while terms with lower levels have bigger IC values. To prove this 
point of view, we investigate the relationships between the number of terms and their 
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Fig. 1  The amount distribution of terms based on IC with respect to ontologies a BP, b CC, and c MF. X-axis 
and Y-axis indicate the the scope of IC value and the amount of terms respectively
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depth. The results are shown in Fig. 2. The GO terms with the middle level are 89 per-
cent of the total in the three ontologies, which demonstrates that the IC values of most 
terms should be medium.

Lastly, we analyze the results of method Resnik, WIS, and STE in detail. For method 
Resnik, there is more than 85 percent of IC of terms are larger than 0.9. In other words, 
this model does not distinguish the difference of terms in the GO graph. Method WIS 
makes a big improvement compared with Resnik. However, many small IC values are 
presented on the curve of WIS. The results of the proposed model STE are highly con-
sistent with the Eq.  6, which meets the human perspectives. Overall, STE is the best 
model in these three methods in measuring the IC values of terms.

Gene functional classification in biological pathways

Compare gene functional similarity calculation methods with meaningful pathways is 
effective to a large extent. If the results of a gene functional similarity method are con-
sistent with the fact that demonstrated in the biological pathways, this method will be 
an effective one. Meanwhile, there are more than 80 biological pathways in the selected 
dataset, and we choose one pathway named ‘phenylalanine degradation’ with ten differ-
ent genes and eight various EC numbers to validate the performances of methods to be 
compared. The selected pathway is shown in Fig. 3. At the same time, we compute the 
functional similarities of the 10 genes with respect to MF ontology with STE and three 
baseline methods Resnik, Wang, and VSM.

It is generally believed that genes with similar EC numbers will have a higher func-
tional similarity. The results are demonstrated in Fig. 4. For method Resnik, there is 
one pair of genes of which functional similarity is higher than 0.5 and the similarity 
of other genes pairs are small. Taking gene ‘PDC1’ and ‘PDC5 ’ as an example, the 
EC number of these two genes are the same, and their similarity value is only 0.43. 
For method Wang, the functional similarities of gene pairs are not very distinguish-
able. For example, gene ‘PDC6’ has a higher similarity with gene ‘ADH5’ and ‘ADH4’ 

Fig. 2  The amount distribution of terms based on depth with respect to BP, CC and MF ontologies
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than gene ‘SFA1’. This is not inconsistent with the EC number knowledge. For method 
VSM, the EIC number of gene ‘H1S5’ and ‘PDC1’ is quite different, but the functional 
similarity of them has a higher similarity, which is unreasonable.

In the end, for STE, the functional similarities of gene pairs are consistent with the 
class of the EC number. Moreover, it can also distinguish different the ‘distance’ of 

Fig. 3  The detailed information of phenylalanine degradation pathway

Fig. 4  Gene function classification results with respect to MF ontology. a Resnik, b Wang, c VSM and d STE
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gene pairs from the functional similarity. Overall, STE is the best of the four com-
pared methods.

Results on PPIs

It is another critical evaluation criterion to score the functional similarity calcula-
tion methods utilizing protein interactions. In this sub-experiment, according to the 
selected PPIs in the dataset, we calculate their functional similarity. Then the perfor-
mance of functional calculation methods is deeply compared based on the receiver 
operating characteristic (ROC) and the area under the curve (AUC) metric.

The functional similarity values of PPI pairs for S. cerevisiae and H. sapiens are 
measured using all seven methods. Tables 1 and 2 present their corresponding AUC 
values respectively. Specifically, on S. cerevisiae dataset, method simGIC runs first on 
CC_IEA- and MF_IEA+. STE achieves the best performance on four sub-datasets, 
which are CC_IEA+, BP_IEA+, MF_IEA-, and BP_IEA-. The performances of the 
other four methods are inferior to these two methods on the whole. On H. sapiens 
dataset, similar to the results on S. cerevisiae, method STE get the rank first on three 
sub-ontologies: BP_IEA+, BP_IEA- and MF_IEA-. Besides, simGIC achieves a rela-
tively good performance, since it also got first results on MF_IEA+, CC_IEA+ and 
CC_IEA-. However, there is only a small gap between STE and simGIC on CC_IEA- 
that the score of simGIC is 0.0028 higher than that of STE. Therefore, method STE 
is superior to method simGIC and the other five methods on PPI experiments. It is 
worth noting that group-wise methods show better performance than pairwise meth-
ods on PPI experiment.

Table 1  AUC values in S. cerevisiae datasets with respect to ontology BP, CC and MF (IEA+ and IEA-)

The best results are in bold

Methods BP_IEA+ CC_IEA+ MF_IEA+ BP_IEA- CC_IEA- MF_IEA-

STE 0.8234 0.8317 0.7441 0.8724 0.8343 0.7460
simGIC 0.8198 0.8223 0.7497 0.8647 0.8392 0.7023

Resnik 0.7888 0.8211 0.6987 0.7949 0.8043 0.6182

WIS 0.8184 0.8249 0.7371 0.8643 0.8122 0.7259

simUI 0.8095 0.8213 0.7253 0.8447 0.8004 0.7098

VSM 0.8115 0.8246 0.7294 0.8477 0.8033 0.7088

Wang 0.7932 0.8028 0.7110 0.8262 0.7948 0.6905

Table 2  AUC values in H. sapiens datasets with respect to ontology BP, CC and MF (IEA+ and IEA-)

The best results are in bold

Methods BP_IEA+ CC_IEA+ MF_IEA+ BP_IEA- CC_IEA- MF_IEA-

STE 0.8624 0.7504 0.7228 0.7940 0.6839 0.6907
simGIC 0.8381 0.7614 0.7597 0.7839 0.6867 0.6730

Resnik 0.6696 0.6714 0.7033 0.7264 0.6638 0.6662

WIS 0.8049 0.6734 0.6637 0.7718 0.6604 0.6835

simUI 0.7921 0.6484 0.6208 0.7734 0.6586 0.6836

VSM 0.7896 0.6564 0.6297 0.7825 0.6675 0.6732

Wang 0.7334 0.6260 0.5824 0.7404 0.6466 0.6474
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Results of gene expression experiment

In this experiment, we randomly selected 3500 gene pairs on the three ontologies. At the 
same time, the functional similarity with IEA+ and IEA- on different ontologies of these 
gene pairs are computed using our proposed STE and six baselines (WIS, VSM, Resnik, 
Wang, simUI, and simGIC). Based on the obtained gene functional similarity values and 
gene expression values, the pearson’s correlation coefficients between them are calcu-
lated. The results for these seven methods are listed in Table 3.

On the whole, the correlation coefficients on CC, BP, and MF have a different distribu-
tion that CC ontology has the highest values, followed by BP and MF. On the method 
aspect, method GIC performs best on four sets of experiments, which are BP_IEA+, 
MF_IEA+, CC_IEA-, and BP_IEA- respectively. Meanwhile, method Resnik get, the 
highest score on CC_IEA+. The proposed method STE only runs first on MF_IEA-, 
which is less unsatisfactory. In this experiment, the performance of method simGIC is 
best, followed by method STE and Resnik. On the whole, the performance of group-wise 
approaches is better than that of the pairwise methods.

Discussion
In the current study, we propose a novel computational model for calculating the IC of a 
term in the GO graph. As far as we know, there are two categories of methods for com-
puting the IC of GO terms, which are corpus-based and structural-based. Corpus-based 
methods such as Lin [13], Jiang and Conrath [12], and Resnik [11], measure the IC of 
a term by calculating the frequency that the term appears in a specific corpus. How-
ever, owing to the diversity and variability of corpora, corpus-based methods may obtain 
inaccurate IC of terms. Structural-based methods incorporate the structural informa-
tion of term into its IC, which can effectively capture the information of the GO graph. 
For example, Sánchez [18] uses the ancestors of terms and the leaf terms as the informa-
tion to measure IC. Subsequently, SORA [19] propose to add the depth information of 
terms into the measurement of IC. Following SORA, WIS [20] employ the depth, ances-
tors, descendants simultaneously to enrich the information contained by terms. Never-
theless, Sánchez may lose some useful structural information such as depth compared 
with SORA and WIS. WIS improves SORA by introducing the depth of descendants and 
the number of ancestors and . These works show the IC of a term has a strong correla-
tion with its depth in the GO graph.

Table 3  Pearson’s correlation coefficient with gene expression dataset with respect to ontology BP, 
CC and MF (IEA+ and IEA-)

The best results are in bold

Methods BP_IEA+ CC_IEA+ MF_IEA+ BP_IEA- CC_IEA- MF_IEA-

STE 0.4048 0.4197 0.2411 0.4403 0.5412 0.1998
simGIC 0.4053 0.4212 0.2546 0.4418 0.5540 0.1972

Resnik 0.3135 0.4405 0.2219 0.3818 0.5286 0.1439

WIS 0.3993 0.4125 0.2457 0.4318 0.5162 0.1980

simUI 0.3799 0.4003 0.2241 0.4252 0.5151 0.1889

VSM 0.3416 0.3621 0.1941 0.4024 0.4999 0.1806

Wang 0.2160 0.2292 0.0695 0.3141 0.4046 0.0563
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Inspired by the above observations, we encapsulate the depth of both the given term 
and its ancestors to compute its IC. Additionally, we also exploit the number of descend-
ants and all GO terms to enrich the information contained by terms. From Fig. 2, it can 
be found that a large proportion of terms located in the middle hierarchy of the GO 
graph. Further, Fig. 1 demonstrates the IC of terms calculated by our proposed method 
are concentrated in the middle range, whether in BP, CC, or MF, which fits well with the 
distribution in Fig. 2. To sum up, our proposed method for calculating the IC of terms is 
more effective against the early proposed methods.

Conclusion
In the current study, we proposed a novel computational model called STE to measure 
gene functional similarity. This method could make the best use of the GO structure to 
calculate the IC values of GO terms accurately by assigning a reasonable weighted value 
to the relationships of the GO structure. Especially, the depth and the genetic structure 
of GO terms are all merged into the IC value calculation model. Therefore, the IC values 
of terms are ranging from 0 to 1 and most of them are between 0.3 and 0.7. Besides, 
based on the values of edges, we have the ability to accurately estimate the IC values of 
annotation term sets with the concept of the inherited IC value concept. This is critical 
to the functional similarity calculation methods. Consequently, experimental results on 
various datasets demonstrated that STE is superior to the other six competitive methods 
in measuring functional similarity of genes.

Methods
Measuring the IC value of a term

A GO term with a lower level will describe a more specific function and vice versa. The 
IC of a term will be employed as a metric to measure how specific the term is. There-
fore, terms with lower hierarchy will show higher values than those with higher hierar-
chy. Aside from this, terms with lower hierarchy always tend to have more ancestors and 
fewer descendants. Therefore, for a give GO term t, a novel computational model for 
calculating its IC value is developed as follows:

where Ance(t) and Desc(t) denote the ancestor set and descendant set of term t, depth(t) 
and N are the max depth of term t and the total amount of GO terms.

The weighted value of an edge

As we know, there are many edges at different levels that linking the terms in the GO 
graph. To show the specificity of the edge, we assign a value ranging from 0 to 1 to each 
edge in the GO graph. The model for calculating the weighted value of an edge between 
term ti and tj can be expressed as:

(6)
IC(t) = log(depth(t)) ∗



log





�

ti∈Ance(t)

depth(ti)



+ 1





∗

�

1−
log(|Desc(t)|)

log(N + 1)

�
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where tj is the direct descendant node of ti , Desc(t) contains the descendants of term t.

Measuring the own IC of a term

Based on the true path rule in the gene annotation area, if one gene is annotated by a 
GO term, all the ancestors of this term will annotate the gene. Therefore, terms in the 
annotation term set have an inheritance relationship. The IC of term tj can be seen as 
two parts: one is the inherited IC denoted as ICinherited(tj) from its parent terms and the 
other is its own IC denoted as the ICown(tj) , which can be calculated as follows:

where Parent(tj) includes all the direct ancestors of term tj . The weighted value ωij is 
calculated using Eq. 7.

Measuring the IC value of a term set

To avoid calculating the overlap semantics in a term set, we utilize Eq. 9 to sum up the 
IC of a term. Suppose T is a term set, the IC value of T defined as follows:

An example of calculating the IC of a term set

From Fig. 5, eight GO terms are contained in a term set. The IC of each term and the 
weight of every edge are listed in Tables 4 and 5 respectively. Suppose set S contains 

(7)ωij =

∑

tm∈Desc(tj)

IC(tm)

∑

tn∈Desc(ti)

IC(tn)

(8)ICinherited(tj) =
∑

ti∈Parent(tj)

ωij ∗ IC(ti)

(9)ICown(tj) = IC(tj)− ICinherited(tj)

(10)IC(T ) =
∑

t∈T

ICown(t)

Fig. 5  DAG for GO term organelle assembly:0070925
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the eight terms and the computational process using our method to calculate the IC 
of term S is presented in Table 6.

In the first step, we initialize the IC(S) to be 0. It’s obvious that term t1 is the root 
of the term set and ICown(t1) is 0. Hence,the result after the first step is IC(S) plus 
ICown(t1) and is equal to 0.

In the second step, according to the Eq. 9, we calculate ICown(t2) and its result is 
0.01. Therefore, the result of IC(S) after the second step is IC(S) calculated by the 
last step plus ICown(t2) and is equal to 0.01.

After iteration is finished, we have calculated all ICown of terms in the DAG and get 
the final result of IC(S). It is worth noting that using the proposed method to calcu-
late the IC of term sets is very efficient and Algorithm 1 describes the computational 
process of the IC of o term set by the proposed model.

Measuring the gene functional similarity

Suppose there are two genes G1 and G2 , their annotation term sets are TG1 and TG2 
respectively. The functional similarity between them is expressed as:

where ∩ denotes the intersection while ∪ represents the union of the two sets 
respectively.

(11)simSTE(G1,G2) =
IC(TG1 ∩ TG2)

IC(TG1 ∪ TG2)

Table 4  The IC values of corresponding terms in Fig. 5

Term t1 t2 t3 t4 t5 t6 t7 t8

IC 0.0 0.01 0.02 0.04 0.05 0.07 0.09 0.18

Table 5  The weight values of corresponding edges in Fig. 5

Edge ω12 ω13 ω24 ω34 ω35 ω46 ω47 ω57 ω68 ω78

Weight 0.85 0.98 0.97 0.84 0.71 0.65 0.71 0.72 0.67 0.84

Table 6  The computational process for measuring the IC of term set S

Step Term IC ICown IC(S)

1 t1 0.0 0 0.000

2 t2 0.01 ICown(t2) = IC(t2)− IC(t1) ∗ ω12 = 0.01 0.010

3 t3 0.02 ICown(t3) = IC(t3)− IC(t1) ∗ ω13 = 0.02 0.030

4 t4 0.04 ICown(t4) = IC(t4)− IC(t2) ∗ ω24 − IC(t3) ∗ ω34 = 0.014 0.044

5 t5 0.05 ICown(t5) = IC(t5)− IC(t3) ∗ ω35 = 0.036 0.080

6 t6 0.07 ICown(t6) = IC(t6)− IC(t4) ∗ ω46 = 0.044 0.124

7 t7 0.09 ICown(t7) = IC(t7)− IC(t4) ∗ ω47 − IC(t5) ∗ ω57 = 0.026 0.150

8 t8 0.18 ICown(t8) = IC(t8)− IC(t6) ∗ ω68 − IC(t7) ∗ ω78 = 0.058 0.208
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