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Abstract—In recent years, functional similarity has played
an independent role in some biological fields such as gene
clustering, gene functional prediction, and evaluation for protein-
protein interaction. In this premise, some effective methods have
already been proposed based on Gene Ontology (GO). Although
these mainstream methods achieve the purpose for measur-
ing gene functional similarity, they may have some deficiency
when calculating the Information Content (IC) of GO terms.
Consequently, measuring the functional similarity accurately is
still a meaningful objective of research. In this paper, a novel
method called SWE, is proposed for measuring gene functional
similarity based on the GO graph. Firstly, an algorithm to
measure terms’ semantics based on their information in the GO
graph is put forward. The information of GO terms mainly
contains their depth, ancestors and descendants. Secondly, we
calculate the IC of a term set by means of retrieving the
inherited relationship between terms in a term set. Finally, the
functional similarity between two genes is computed based on the
IC overlap ratio of term sets annotating two genes respectively.
Results demonstrate that SWE is superior to existing methods
in some experiments such as functional classification of genes
in a biological pathway, protein-protein interaction and gene
expression experiment. Further analysis demonstrates that SWE
takes not only the specificity of terms into account, but their
information in the GO graph, both of which are shown to be
consistent with human perspectives.

Index Terms—Gene Ontology, Information Content, Specificity
of terms, Inherited relationship, Gene Functional Similarity

I. INTRODUCTION

GO [1]–[3], a controlled vocabulary of terms, is a di-
rected acyclic graph(DAG) and consists of three orthogonal
ontologies: biological process (BP), cellular component (CC)
and molecular function (MF). In the three ontologies, nodes
represent terms and edges represent the relationship of two
connected nodes. GO is a tree-like hierarchy but has a good
deal of paths extending from the root node. The terms at higher
levels are generic while the terms located in lower levels are
more specific.

GO annotations (GOA) [4]–[6], an essential database for
calculating gene functional similarity, are created by asso-
ciating a gene or gene product with GO terms. Lines in
GOA contain information about genes and their corresponding
annotating terms.

In recent years, many gene functional similarity approaches
have been proposed by researchers. Despite their usefulness,
calculating gene functional similarity efficiently and accu-
rately remains a challenging task. When measuring gene
functional similarity, employing IC is a reasonable choice in
the beginning because IC can measure how specific a term
is. The methods of calculating the IC of a term could be
generally classified two categories: corpus-based [7]–[12] and
structured-based [13]–[16].

For corpus-based methods, such as Resnik [7], Jiang and
Conrath [8] and Lin [9], they calculate the IC of a term t via
the following definition:

ICcorpus(t) = − log(p(t)) (1)

where p(t) is the occurrence probability of a term t and its
descendants in a specific corpus such as GOA. As is shown in
(1), the specificity of a term is fully dependent on the number
of genes it annotates in a certain corpus. However, there is
a fact that it’s difficult to obtain the IC of a term correctly
especially more than one corpus contains that term because
the occurrence probability of the term may not different in
different corpus. There is a evidence [17] that annotation
corpus changes always have a high impact on IC.

Alternatively, IC can also be calculated based on the GO
structure. In the GO graph, the lower a term’s level, the more
special the term. Thus, the IC of a term at high level should
be less than the term located in the leaves. In this premise,
David Sánchez [13] designed a model to compute the IC of a
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term, which is defined as:

IC(c) = − log

⎛
⎝ |leaves(c)|

|subsumers(c)| + 1

max leaves+ 1

⎞
⎠ (2)

where subsumers(c) and max leaves represent the ancestor
terms of term c and total numbers of leaves respectively in
the GO graph. In addition, leaves(c) is the intersection of the
descendants of term c and the leaves of GO graph. The fact
that 1 is added to the numerator and denominator is to solve
the probable circumstance that log(0). Nevertheless, Sánchez’s
model not fully consider term’s information such as their depth
in the GO graph but only take their number into account.
Besides, the descendants of a term which are not leaves are
ignored. Furthermore, WIS [15] and Teng [14] considered that
the IC of a term is proportional to its depth in the GO graph
and they make some useful improvements for calculating IC
as a result.

According to the GO graph and GO annotations, gene
functional similarity approaches can generally be classified
two categories: pairwise methods [7]–[9], [18] and groupwise
methods [14], [15], [19]–[22].

Resnik [7] proposed a pairwise method based on the nodes
of Go graph, where the semantic similarity between two terms
can be computed by:

SimResnik(t1, t2) = IC(LCA(t1, t2)) (3)

where LCA(t1, t2) is the lowest common ancestor of term t1
and t2. Besides, some researchers have improved this method
such as Wang, Lin and Jiang. When calculating the semantic
similarity of two terms, they considered the IC of terms
themselves except the IC of LCA.

Groupwise methods measure gene functional similarity
through integrating the terms annotating two genes into a
group first. Then, they employ different methods to process the
term set and calculating gene functional similarity according
to the processed result last. Gentleman [21] raised a method
called simUI and the formula of this method is defined as:

simUI(G1, G2) =
|SG1

∩ SG2
|

|SG1
∪ SG2

| (4)

where SG1
and SG2

represent the term set annotating gene G1

and G2 respectively. Inspired by simUI, simGIC [22] take the
IC value of terms into consideration. For genes G1 and G2,
simGIC is calculated by:

simGIC(G1, G2) =

∑
ti∈SG1

∩SG2

IC(ti)

∑
tj∈SG1

∪SG2

IC(tj)
(5)

While simUI doesn’t consider the specificity of terms in
the GO graph and simGIC only take the IC of terms into
consideration, which may lead to some semantics loss.

In addition to the methods mentioned above, there are some
approaches [19], [20] based on vector space and we called the
basic vector space model VSM in this paper. In VSM, the

one-hot coding is adopted to assign values to vectors and the
dimension of a vector is equal to the total number of terms in
GO. Each dimension represents by a binary digit, denoting the
presence or absence of a term in the set annotating the gene.
The similarity of two genes calculated by VSM is defined as:

SimV SM (G1, G2) =
υ1 · υ2
|υ1| |υ2| (6)

where υ1 and υ2 correspond to the term set annotating gene G1

and G2 respectively. Mathematically speaking, the similarity
between two genes measured by VSM method is the cosine
similarity of two vectors. In human perspectives, VSM ignores
the relationship of terms and the specificity of terms in the GO
graph.

In summary, a method for measuring gene functional simi-
larity may be an effective method when it takes the specificity
of nodes and edges into full consideration in the GO graph.
Therefore, a novel method based on Semantic-Weighted Edge
called SWE is proposed to measure gene functional similarity
precisely. Firstly, we calculate the IC of a term considering the
max depth of itself and its ancestors as well as the topology
of its descendant in the GO graph. Secondly, we compute the
IC of the intersection and the union set of term set annotating
two genes utilizing the inherited relationship between terms
respectively. Finally, the gene function similarity is the ratio
between the IC of the intersection and the union set.

II. METHODS

A. Calculate the IC of a term

Generally speaking, the lower a term’s level, the more
special the term, so it’s evident that terms at lower levels have
larger IC than terms at higher levels. In addition, Terms with
more ancestors will be more specific than terms with less ones.
An effective method consider not only the specificity of the
term itself, but also inheritance relationships in the GO graph.
In this premise, an effective method is given by:

IC(t) = log(depth(t)) ∗
⎛
⎝log

⎛
⎝ ∑

ti∈Ance(t)

depth(ti)

⎞
⎠+ 1

⎞
⎠

∗
(
1− log(|Desc(t)|)

log(N + 1)

)

(7)
where depth(t) represents the max depth of term t, Ance(t)
denotes the ancestor terms of term t, Desc(t) represents the
descendant terms of term t and N denotes the total terms in
the GO graph.

B. Calculate the IC of a term set based on semantic-weighted
edge

Firstly, in terms of the inheritance relationship existing in
the GO graph, the weight of an edge based on semantic-
weighted edge is expressed as:

ωij =

∑
tm∈Desc(tj)

IC(tm)

∑
tn∈Desc(ti)

IC(tn)
(8)
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Fig. 1. The distributions of term quantity based on (a):BP ontology, (b):CC
ontology and (c):MF ontology for three methods. The abscissa represents the
range of IC value and the ordinate denotes the quantity of terms

where ti is a parent term of tj and Desc(t) is the descendant
term set of term t. In order to fully consider the specificity
of nodes and edges, we use the IC of the term set as the
parameters of weight instead of simply use the numbers of
the term set.

Subsequently, according to the true path rule, a gene an-
notated with some terms also is annotated with their an-
cestor terms. In a term set existing inheritance relationship
between terms, the IC of a term tj is consisted of two parts:
ICinherited(tj) and ICown(tj). The first one is inherited
semantics, which is calculated by:

ICinherited(tj) =
∑

ti∈Parent(tj)

ωij ∗ IC(ti) (9)

where Parent(tj) is the parent term set of term tj and ωij

is computed by (8). The second one belong to itself, which is
defined as:

ICown(tj) = IC(tj)− ICinherited(tj) (10)

Finally, the IC of a term set is the sum of the own IC of
all terms in the set, which is given by:

IC(T ) =
∑
t∈T

ICown(t) (11)

Apparently, it can avoid to calculate the overlap semantics
between two terms that using SWE to calculate the IC of a
term set.

C. Calculate the functional similarity between genes

Given two genes G1 and G2 annotated with term sets TG1

and TG2
respectively, the functional similarity between G1 and

G2 is defined as:

simSWE(G1, G2) =
IC(TG1

∩ TG2
)

IC(TG1 ∪ TG2)
(12)

where ∩ and ∪ represent the computation of intersection and
union respectively.

III. VALIDATIONS AND RESULTS

A. The database of GO and GO annotations

Gene Ontology file is downloaded from the Gene ontology
database(http://geneontology.org/docs/download-ontology/, d-
ated December 2019) containing 44,674 ontology terms sub-
divided into 29,380 biological process terms, 4,181 cellular
component terms and 11,113 molecular function terms.

Gene Ontology annotation files for proteins are down-
loaded from the Gene Ontology database(http://geneontology.
org/docs/download-go-annotations/) for Homo sapiens(dated
December 2019) and Saccharomyces cerevisiae(dated Decem-
ber 2019).

Fig. 2. The distributions of term quantity for BP, CC and MF terms based
on the depth of GO graph
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Fig. 3. Functions of genes in Saccharomyces cerevisiae Pathway: phenylalanine degradation

B. Biological pathway

Classifying the genes according to the molecular function
is an important validation for a gene functional similarity
measure [23]. In the current study, we utilize the yeastpath-
ways data of Saccharomyces genome database(SGD, https:
//pathway.yeastgenome.org/) to study functional classification
of genes.

C. Protein-Protein interaction dataset

For PPI experiments, we collect Homo sapiens datasets from
WIS [15] and Saccharomyces cerevisiae datasets from Zhang
[18]. After updating, we construct a new dataset which are core
set of DIP database. Negative datasets with the same number
of PPIs for yeast and human are independently generated by
randomly choosing annotated gene pairs for BP, CC and MF
ontology, which are absent from a combined dataset of all
possible PPIs.

D. Gene expression dataset for Saccharomyces cerevisiae

The gene expression dataset was downloaded from Jain and
Davis [24]. The dataset contains 11,966 S. cerevisiae gene
pairs after updated, including gene pairs of 3,888, 4,211 and
3,867 based on BP, CC and MF ontology respectively.

E. The distribution of term IC in different ranges based on
different method and of terms based on the range of depth in
the GO

An effective computational model of IC is a key factor
to measuring the gene functional similarity accurately. The
distribution of term IC in different ranges based on BP, CC
and MF ontologies are presented in Fig. 1.

In human perspectives, the IC of term which have high level
is less than the term located on the lower level because the
lower a term’s level, the more special the term. The distribution
of terms based on the range of depth in three ontologies are
given in Fig. 2. According to the Fig. 2, it’s shows that more
than 89 percent of terms are at the middle levels of GO graph

no matter what ontology they belong to. Therefore, the number
of terms whose IC value are in the medium range should be
in the majority.

For Resnik’s model, there are more than 85 percent of term
IC is more than 0.9 and this fact is show that Resnik’s model
not consider the specificity of different terms in the Ontology.
WIS model has a huge improvement over Resnik’s model. The
distribution of IC does not change dramatically at any point
like Resnik’s model. However, a lot of terms are focused on
the range of lower IC value presented by WIS and this curve
is no consistent with the distribution of terms. On the contrary,
the distribution of term IC given by SWE is consistent with
the distribution of terms and human perspectives because we
take the specificity of terms full into consideration based on
the GO graph.

F. Functional classification of genes in a biological pathway

Using Saccharomyces genome database as the reference for
our measurement of gene functional similarity is an effective
way to compare the results of our method and other method.
The SGD database contains more than 80 biological pathways.
Most of these pathways contain at least three genes annotated
by both GO molecular function terms and EC numbers.
For example, there are 10 genes and 8 EC numbers in the
‘phenylalanine degradation’ pathway depicted in Fig. 3. We
calculate the functional similarity among these genes based
on MF ontology by method Resnik, method Wang, VSM and
SWE. The result is presented in Fig. 4.

For Resnik’s model, as is shown in Fig. 4(a), only a pair of
genes has a similarity value greater than 0.5, although some
of them have the same EC number in the biological pathway.
For example, gene ‘PDC1’ and ‘PDC5’ have the same EC
number in the biological pathway, but their similarity value
only has 0.43. Therefore, the result obtained from Resnik’s
model inconsistent with human perception to a great extent.
As is shown in Fig. 4(d), the result obtained by SWE can
distinguish different genes precisely based on the EC number
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genes have. But not only that, it also shows that for those
genes whose EC number are entirely different, the similarity
value between them is quite low. In summary, SWE can
reflect the closeness of gene’s biological meanings in human
perspectives.

G. Protein-Protein interaction of S. cerevisiae and H. sapiens

The result of protein-protein interaction experiment is a
desirable evaluation criterion for gene functional similarity.
In our evaluation, we conduct out experiment using the PPI
dataset aforementioned and the results of experiment were
depicted by receiver operating characteristic (ROC) curves,
with area under the curve(AUC) as the main accuracy criterion.

Functional similarity values between genes in S. cerevisiae
and H. sapiens are calculated by SWE and other six methods

which are simGIC, Resnik, WIS, simUI, VSM, Wang. AUC
values for each method in terms of BP, CC and MF ontology
on S. cerevisiae and H. sapiens PPI datasets are given in
Table I. For S. cerevisiae, SWE run first on four experiments
which based on BP IEA+, CC IEA+, BP IEA− and
MF IEA− and was only inferior to method simGIC on
MF IEA+ and CC IEA−. Furthermore, the results of
method Wang and Resnik on PPI for S. cerevisiae datasets are
inferior to other methods on almost all experiments. Therefore,
this result demonstrates groupwise methods perform better
than pairwise methods on S. cerevisiae datasets.For H. sapiens,
it can be seen that SWE win the first place with an overwhelm-
ing advantage on BP IEA+, BP IEA− and MF IEA−.
simGIC obtain the best results on other three experiments and
SWE run on simGIC’s heels. For example, the AUC of simGIC

Fig. 4. Results of pathway experiments based on MF ontology using Method (a)Resnik, (b) Wang, (c)VSM and (d) SWE
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TABLE I
AUC OF SEVEN FUNCTIONAL SIMILARITY MEASURES FOR BP, CC AND MF ONTOLOGY WITH IEA+ AND IEA- IN PPI DATASETS

Datasets Methods IEA+ IEA-

BP CC MF BP CC MF

S. cerevisiae

SWE 0.8234 0.8317 0.7441 0.8724 0.8343 0.7460
simGIC 0.8198 0.8223 0.7497 0.8647 0.8392 0.7023
Resnik 0.7888 0.8211 0.6987 0.7949 0.8043 0.6182
WIS 0.8184 0.8249 0.7371 0.8643 0.8122 0.7259

simUI 0.8095 0.8213 0.7253 0.8447 0.8004 0.7098
VSM 0.8115 0.8246 0.7294 0.8477 0.8033 0.7088
Wang 0.7932 0.8028 0.7110 0.8262 0.7948 0.6905

H. sapiens

SWE 0.8624 0.7504 0.7228 0.7940 0.6839 0.6907
simGIC 0.8381 0.7614 0.7597 0.7839 0.6867 0.6730
Resnik 0.6696 0.6714 0.7033 0.7264 0.6638 0.6662
WIS 0.8049 0.6734 0.6637 0.7718 0.6604 0.6835

simUI 0.7921 0.6484 0.6208 0.7734 0.6586 0.6836
VSM 0.7896 0.6564 0.6297 0.7825 0.6675 0.6732
Wang 0.7334 0.6260 0.5824 0.7404 0.6466 0.6474

The best results are in bold

TABLE II
PEARSON’S CORRELATION COEFFICIENT OF SEVEN FUNCTIONAL MEASURES FOR BP, CC AND MF ONTOLOGY WITH GENE EXPRESSION DATASET (IEA+

AND IEA-)

Methods IEA+ IEA-

BP CC MF BP CC MF
SWE 0.4048 0.4197 0.2411 0.4403 0.5412 0.1998

simGIC 0.4053 0.4212 0.2546 0.4418 0.5540 0.1972
Resnik 0.3135 0.4405 0.2219 0.3818 0.5286 0.1439
WIS 0.3993 0.4125 0.2457 0.4318 0.5162 0.1980

simUI 0.3799 0.4003 0.2241 0.4252 0.5151 0.1889
VSM 0.3416 0.3621 0.1941 0.4024 0.4999 0.1806
Wang 0.2160 0.2292 0.0695 0.3141 0.4046 0.0563

The best results are in bold

only 0.0028 more than SWE on CC IEA− experiment. In
addition, the performance of groupwise methods is better than
pairwise methods on most experiments.

H. Pearson’s correlation coefficient analysis based on gene
expression data

In order to analyze the correlation with gene expression
data, we updated the datasets mentioned in III-D, and then
randomly selected 3500 gene pairs for BP, CC and MF
ontology respectively as the experimental data. We calculated
the similarity value for every gene pair adopted seven methods
which are SWE, simGIC, Resnik, WIS, simUI, VSM and
Wang with IEA+ and IEA- on BP, CC and MF ontology first.
Next, Pearson’s correlation between gene functional similarity
values and gene expression values can be computed and is
listed in Table II. In general, higher this value, better is the
measure.

As is shown in Table II, for different ontologies, the
correlations which belong to CC ontology have the highest
values on either IEA− or IEA+ experiments, followed
by BP and MF ontology. For different methods, simGIC
ranks first on BP IEA+, MF IEA+, BP IEA− and
CC IEA− experiments, while SWE has highest correla-
tion on MF IEA−. Method Resnik is superior to other
methods on CC IEA+, but its performance on BP IEA+,

MF IEA+, BP IEA−, MF IEA− experiments are less
than satisfactory. Although SWE runs first on MF IEA−
only and slightly worse than simGIC, their differences are
almost negligible. In this experiment, the overall performance
of groupwise methods such as SWE and simGIC are better
than pairwise methods including method Wang and method
Resnik, though method Resnik has highest correlation than
other methods on CC IEA+ experiment. In conclusion, the
performance of SWE has reached a satisfactory level in gene
expression experiment.

DISCUSSION

In this paper, an effective model is designed for measuring
the IC of a term, which takes the overall specificities of the
term based on GO graph. These specificities contain depth,
ancestors, descendants and total number of terms. According
to Fig. 2, GO is a tree contain much nodes at middle levels
and less nodes at top and bottom levels. Therefore, in human
perspectives, the number of terms with IC in medial range
should be in the majority. The results listed in the Fig. 1
demonstrate that the performance of SWE is more consistent
with human perspectives than the other two models.

What’s more, SWE introduce the concept of semantic-
weighted edge inspired by WIS. In order to avoid the defect
exisiting in WIS, the edge is semantically weighted in SWE.
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The results of SWE demonstrate it is effective to estimate gene
functional similarity.

However, SWE has a shortage that is the definition of the IC
of terms. How to evaluate the effectiveness of the model is a
challenge problem. In this paper, we conducted an experiment
and show the results in Fig. 1. But this is may be far from
enough. In the current research, we evaluate and compare the
results on three mainstream experiments and ignore some other
metrics. We defer that as future work and some applications
such as gene functional similarity network can have a widely
use.

CONCLUSION

In the current study, we have proposed a novel functional
similarity method between genes combining the gene ontology
structure with the gene ontology annotation, namely SWE.
SWE belongs to groupwise method and treats the GO terms
annotating different genes as a term set. In addition, the
specificity of every GO term and each edge in the ontology
are took fully consideration.

As is shown in this article, we have resolved the difficulty
of IC’s definition first, and then the specificity of each term
and edge were fully took into account. Finally, it can be found
that the quantity distribution of terms in terms of GO depth
and IC range has the same meaning, that is, the number of
terms in the middle layers in the go structure is dominant and
their IC are mostly between 0.3 and 0.7.

In order to estimate the reliability and effectiveness of
SWE, three mainstream experiments, which are functional
classification of genes in biological pathway, protein-protein
interaction experiment and pearson’s correlation coefficient
analysis based on gene expression data, are applied into the
evaluation. In addition to SWE, we also apply some classic
approaches into each experiment as controls. The experimental
results demonstrate that SWE is a more reliable and effective
approach to measure gene functional similarity than other
tested methods.
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